TY - JOUR
T1 - Phase transformation and microstructure control of Ti2AlNb-based alloys
T2 - A review
AU - Zhang, Hongyu
AU - Yan, Na
AU - Liang, Hongyan
AU - Liu, Yongchang
N1 - Publisher Copyright:
© 2021
PY - 2021/7/30
Y1 - 2021/7/30
N2 - In recent years, the Ti2AlNb-based alloys are selected as potential alloys for elevated temperature applications to replace conventional Ni-based superalloys owing to their good creep resistance and oxidation resistance which are related to the O precipitates. In this paper, the precipitation mechanisms of O phase, phase transformation and microstructure control of Ti2AlNb-based alloys are reviewed. Ti2AlNb-based alloys generally consist of B2/β, α2, and O phase with different morphologies which are derived from the various heat treatment processes, including equiaxed α2/O particles, bimodal microstructure, and Widmannstätten B2/β + O structures etc. As a newly developed strengthening phase, O precipitates can be precipitated from the B2/β matrix or α2 phase directly as well as generated by means of peritectoid reaction of α2 phase and bcc matrix. Microstructural control of the Ti2AlNb-based alloys can be implemented by refining the original B2/β grain size and regulating the O precipitates. Multidirectional isothermal forging (MIF) and powder metallurgy technique are two effective methods to refine the original B2/β grains and the morphology and size of O precipitates can be regulated by adding alloying components and pre-deformation process. Moreover, the phase diagram as well as coarsening behavior of Ti2AlNb-based alloys in ageing process is also reviewed. For the further application of these alloys, more emphasis should be paid on the deep interpolation of microstructure-property relationship and the adoption of advanced manufacturing technology.
AB - In recent years, the Ti2AlNb-based alloys are selected as potential alloys for elevated temperature applications to replace conventional Ni-based superalloys owing to their good creep resistance and oxidation resistance which are related to the O precipitates. In this paper, the precipitation mechanisms of O phase, phase transformation and microstructure control of Ti2AlNb-based alloys are reviewed. Ti2AlNb-based alloys generally consist of B2/β, α2, and O phase with different morphologies which are derived from the various heat treatment processes, including equiaxed α2/O particles, bimodal microstructure, and Widmannstätten B2/β + O structures etc. As a newly developed strengthening phase, O precipitates can be precipitated from the B2/β matrix or α2 phase directly as well as generated by means of peritectoid reaction of α2 phase and bcc matrix. Microstructural control of the Ti2AlNb-based alloys can be implemented by refining the original B2/β grain size and regulating the O precipitates. Multidirectional isothermal forging (MIF) and powder metallurgy technique are two effective methods to refine the original B2/β grains and the morphology and size of O precipitates can be regulated by adding alloying components and pre-deformation process. Moreover, the phase diagram as well as coarsening behavior of Ti2AlNb-based alloys in ageing process is also reviewed. For the further application of these alloys, more emphasis should be paid on the deep interpolation of microstructure-property relationship and the adoption of advanced manufacturing technology.
KW - Deformation
KW - Microstructure
KW - O precipitates
KW - TiAlNb-based alloys
UR - http://www.scopus.com/inward/record.url?scp=85099192763&partnerID=8YFLogxK
U2 - 10.1016/j.jmst.2020.11.022
DO - 10.1016/j.jmst.2020.11.022
M3 - 文献综述
AN - SCOPUS:85099192763
SN - 1005-0302
VL - 80
SP - 203
EP - 216
JO - Journal of Materials Science and Technology
JF - Journal of Materials Science and Technology
ER -