TY - GEN
T1 - Phase Difference Network for Efficient Differentiation of Hepatic Tumors with Multi-Phase CT
AU - Wu, Yuanfeng
AU - Chen, Geng
AU - Feng, Zhan
AU - Cui, Heng
AU - Rao, Fan
AU - Ni, Yangfan
AU - Huang, Zhongke
AU - Zhu, Wentao
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Liver cancer has been one of the top causes of cancer-related death. For developing an accurate treatment strategy and raising the survival rate, the differentiation of liver cancers is essential. Multiphase CT recently acts as the primary examination method for clinical diagnosis. Deep learning techniques based on multiphase CT have been proposed to distinguish hepatic cancers. However, due to the recurrent mechanism, RNN-based approaches require expensive calculations whereas CNN-based models fail to explicitly establish temporal correlations among phases. In this paper, we proposed a phase difference network, termed as Phase Difference Network (PDN), to identify two liver cancer, hepatocellular carcinoma and intrahepatic cholangiocarcinoma, from four-phase CT. Specifically, the phase difference was used as interphase temporal information in a differential attention module, which enhanced the feature representation. Additionally, utilizing a multihead self-attention module, a transformer-based classification module was employed to explore the long-term context and capture the temporal relation between phases. Clinical datasets are used in experiments to compare the performance of the proposed strategy versus conventional approaches. The results indicate that the proposed method outperforms the traditional deep learning based methods.
AB - Liver cancer has been one of the top causes of cancer-related death. For developing an accurate treatment strategy and raising the survival rate, the differentiation of liver cancers is essential. Multiphase CT recently acts as the primary examination method for clinical diagnosis. Deep learning techniques based on multiphase CT have been proposed to distinguish hepatic cancers. However, due to the recurrent mechanism, RNN-based approaches require expensive calculations whereas CNN-based models fail to explicitly establish temporal correlations among phases. In this paper, we proposed a phase difference network, termed as Phase Difference Network (PDN), to identify two liver cancer, hepatocellular carcinoma and intrahepatic cholangiocarcinoma, from four-phase CT. Specifically, the phase difference was used as interphase temporal information in a differential attention module, which enhanced the feature representation. Additionally, utilizing a multihead self-attention module, a transformer-based classification module was employed to explore the long-term context and capture the temporal relation between phases. Clinical datasets are used in experiments to compare the performance of the proposed strategy versus conventional approaches. The results indicate that the proposed method outperforms the traditional deep learning based methods.
UR - http://www.scopus.com/inward/record.url?scp=85179650233&partnerID=8YFLogxK
U2 - 10.1109/EMBC40787.2023.10340090
DO - 10.1109/EMBC40787.2023.10340090
M3 - 会议稿件
C2 - 38083466
AN - SCOPUS:85179650233
T3 - Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
BT - 2023 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023 - Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 45th Annual International Conference of the IEEE Engineering in Medicine and Biology Conference, EMBC 2023
Y2 - 24 July 2023 through 27 July 2023
ER -