TY - GEN
T1 - Perturbation Guiding Contrastive Representation Learning for Time Series Anomaly Detection
AU - Tang, Liaoyuan
AU - Wang, Zheng
AU - He, Guanxiong
AU - Wang, Rong
AU - Nie, Feiping
N1 - Publisher Copyright:
© 2024 International Joint Conferences on Artificial Intelligence. All rights reserved.
PY - 2024
Y1 - 2024
N2 - Time series anomaly detection is a critical task with applications in various domains. Due to annotation challenges, self-supervised methods have become the mainstream approach for time series anomaly detection in recent years. However, current contrastive methods categorize data perturbations into binary classes, normal or anomaly, which lack clarity on the specific impact of different perturbation methods. Inspired by the hypothesis that “the higher the probability of misclassifying perturbation types, the higher the probability of anomalies”, we propose PCRTA, our approach firstly devises a perturbation classifier to learn the pseudo-labels of data perturbations. Furthermore, for addressing “class collapse issue” in contrastive learning, we propose a perturbation guiding positive and negative samples selection strategy by introducing learnable perturbation classification networks. Extensive experiments on six realworld datasets demonstrate the significant superiority of our model over thirteen state-of-the-art competitors, and obtains average 5.14%, 8.24% improvement in F1 score and AUC-PR, respectively.
AB - Time series anomaly detection is a critical task with applications in various domains. Due to annotation challenges, self-supervised methods have become the mainstream approach for time series anomaly detection in recent years. However, current contrastive methods categorize data perturbations into binary classes, normal or anomaly, which lack clarity on the specific impact of different perturbation methods. Inspired by the hypothesis that “the higher the probability of misclassifying perturbation types, the higher the probability of anomalies”, we propose PCRTA, our approach firstly devises a perturbation classifier to learn the pseudo-labels of data perturbations. Furthermore, for addressing “class collapse issue” in contrastive learning, we propose a perturbation guiding positive and negative samples selection strategy by introducing learnable perturbation classification networks. Extensive experiments on six realworld datasets demonstrate the significant superiority of our model over thirteen state-of-the-art competitors, and obtains average 5.14%, 8.24% improvement in F1 score and AUC-PR, respectively.
UR - http://www.scopus.com/inward/record.url?scp=85204297670&partnerID=8YFLogxK
M3 - 会议稿件
AN - SCOPUS:85204297670
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 4955
EP - 4963
BT - Proceedings of the 33rd International Joint Conference on Artificial Intelligence, IJCAI 2024
A2 - Larson, Kate
PB - International Joint Conferences on Artificial Intelligence
T2 - 33rd International Joint Conference on Artificial Intelligence, IJCAI 2024
Y2 - 3 August 2024 through 9 August 2024
ER -