TY - JOUR
T1 - Performance investigation of a pulse detonation turbine engine
AU - Jie, Lu
AU - Longxi, Zheng
AU - Hua, Qiu
AU - Zeyang, Xu
AU - Xiaoyao, Duan
N1 - Publisher Copyright:
© IMechE 2015.
PY - 2016/2/1
Y1 - 2016/2/1
N2 - In order to obtain the performance of a pulse detonation turbine engine (PDTE) and compare the PDTE performance with the traditional turbine engine performance, analytical and experimental investigations were conducted in the present work. Ideal thermodynamic cycle analysis was firstly carried out to obtain the upper performance limit of both the PDTE cycle and the Brayton cycle-based engines. A simplified analytical model and a liquid-fueled dual tube PDTE system were built up in order to study the real performance of the PDTE. Thrust performance of the PDTE system was obtained under a self-aspirated mode. The calculated thrust performance based on the simplified analytical model was compared with the experimental data to verify the reliability of the simplified analytical model. Additionally, the specific thrust and specific fuel consumption (SFC) of the PDTE system were compared with the ideal performance of the PDTE cycle and the Baryton cycle-based engines. The results indicate that the ideal PDTE performance is much better than the traditional turbine engine performance. The dual tube PDTE system can be successfully operated at frequencies from 10 Hz to 20 Hz under the self-aspirated mode, indicating the feasibility of the PDTE concept. The simplified analytical model could estimate the real performance of the PDTE if proper losses were being taking into consideration. The specific thrust of the PDTE system is higher than that of the ideal Brayton cycle-based engines, while the SFC is much lower. When an ejector was used for thrust augmentation, the performance could be largely increased. It proves the performance advantages of the PDTE over the traditional turbine engine experimentally for the first time.
AB - In order to obtain the performance of a pulse detonation turbine engine (PDTE) and compare the PDTE performance with the traditional turbine engine performance, analytical and experimental investigations were conducted in the present work. Ideal thermodynamic cycle analysis was firstly carried out to obtain the upper performance limit of both the PDTE cycle and the Brayton cycle-based engines. A simplified analytical model and a liquid-fueled dual tube PDTE system were built up in order to study the real performance of the PDTE. Thrust performance of the PDTE system was obtained under a self-aspirated mode. The calculated thrust performance based on the simplified analytical model was compared with the experimental data to verify the reliability of the simplified analytical model. Additionally, the specific thrust and specific fuel consumption (SFC) of the PDTE system were compared with the ideal performance of the PDTE cycle and the Baryton cycle-based engines. The results indicate that the ideal PDTE performance is much better than the traditional turbine engine performance. The dual tube PDTE system can be successfully operated at frequencies from 10 Hz to 20 Hz under the self-aspirated mode, indicating the feasibility of the PDTE concept. The simplified analytical model could estimate the real performance of the PDTE if proper losses were being taking into consideration. The specific thrust of the PDTE system is higher than that of the ideal Brayton cycle-based engines, while the SFC is much lower. When an ejector was used for thrust augmentation, the performance could be largely increased. It proves the performance advantages of the PDTE over the traditional turbine engine experimentally for the first time.
KW - analytical model
KW - experimental investigation
KW - performance
KW - pulse detonation combustor
KW - Pulse detonation turbine engine
KW - thermodynamic cycle analysis
UR - http://www.scopus.com/inward/record.url?scp=84954447244&partnerID=8YFLogxK
U2 - 10.1177/0954410015591833
DO - 10.1177/0954410015591833
M3 - 文章
AN - SCOPUS:84954447244
SN - 0954-4100
VL - 230
SP - 350
EP - 359
JO - Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
JF - Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering
IS - 2
ER -