TY - JOUR
T1 - Performance evaluation of visual tracking algorithms on video sequences with quality degradation
AU - Fang, Yuming
AU - Yuan, Yuan
AU - Li, Leida
AU - Wu, Jinjian
AU - Lin, Weisi
AU - Li, Zhiqiang
N1 - Publisher Copyright:
© 2013 IEEE.
PY - 2017
Y1 - 2017
N2 - Recently, there are lots of visual tracking algorithms proposed to improve the performance of object tracking in video sequences with various real conditions, such as severe occlusion, complicated background, fast motion, and so on. In real visual tracking systems, there are various quality degradation occurring during video acquisition, transmission, and processing. However, most existing studies focus on improving the accuracy of visual tracking while ignoring the performance of tracking algorithms on video sequences with certain quality degradation. In this paper, we investigate the performance evaluation of existing visual tracking algorithms on video sequences with quality degradation. A quality-degraded video database for visual tracking (QDVD-VT), including the reference video sequences and their corresponding distorted versions, is constructed as the benchmarking for robustness analysis of visual tracking algorithms. Based on the constructed QDVD-VT, we propose a method for robustness measurement of visual tracking (RMVT) algorithms by accuracy rate and performance stability. The performance of ten existing visual tracking algorithms is evaluated by the proposed RMVT based on the built QDVD-VT. We provide the detailed analysis and discussion on the robustness analysis of different visual tracking algorithms on video sequences with quality degradation from different distortion types. To visualize the robustness of visual tracking algorithms well, we design a robustness pentagon to show the accuracy rate and performance stability of visual tracking algorithms. Our initial investigation shows that it is still challenging for effective object tracking for existing visual tracking algorithms on video sequences with quality degradation. There is much room for the performance improvement of existing tracking algorithms on video sequences with quality degradation in real applications.
AB - Recently, there are lots of visual tracking algorithms proposed to improve the performance of object tracking in video sequences with various real conditions, such as severe occlusion, complicated background, fast motion, and so on. In real visual tracking systems, there are various quality degradation occurring during video acquisition, transmission, and processing. However, most existing studies focus on improving the accuracy of visual tracking while ignoring the performance of tracking algorithms on video sequences with certain quality degradation. In this paper, we investigate the performance evaluation of existing visual tracking algorithms on video sequences with quality degradation. A quality-degraded video database for visual tracking (QDVD-VT), including the reference video sequences and their corresponding distorted versions, is constructed as the benchmarking for robustness analysis of visual tracking algorithms. Based on the constructed QDVD-VT, we propose a method for robustness measurement of visual tracking (RMVT) algorithms by accuracy rate and performance stability. The performance of ten existing visual tracking algorithms is evaluated by the proposed RMVT based on the built QDVD-VT. We provide the detailed analysis and discussion on the robustness analysis of different visual tracking algorithms on video sequences with quality degradation from different distortion types. To visualize the robustness of visual tracking algorithms well, we design a robustness pentagon to show the accuracy rate and performance stability of visual tracking algorithms. Our initial investigation shows that it is still challenging for effective object tracking for existing visual tracking algorithms on video sequences with quality degradation. There is much room for the performance improvement of existing tracking algorithms on video sequences with quality degradation in real applications.
KW - benchmarking
KW - Performance evaluation
KW - quality degradation
KW - robustness analysis
KW - visual tracking
UR - http://www.scopus.com/inward/record.url?scp=85017615085&partnerID=8YFLogxK
U2 - 10.1109/ACCESS.2017.2666218
DO - 10.1109/ACCESS.2017.2666218
M3 - 文章
AN - SCOPUS:85017615085
SN - 2169-3536
VL - 5
SP - 2430
EP - 2441
JO - IEEE Access
JF - IEEE Access
M1 - 7847299
ER -