PEFAT: Boosting Semi-Supervised Medical Image Classification via Pseudo-Loss Estimation and Feature Adversarial Training

Qingjie Zeng, Yutong Xie, Zilin Lu, Yong Xia

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

28 Scopus citations

Abstract

Pseudo-labeling approaches have been proven beneficial for semi-supervised learning (SSL) schemes in computer vision and medical imaging. Most works are dedicated to finding samples with high-confidence pseudo-labels from the perspective of model predicted probability. Whereas this way may lead to the inclusion of incorrectly pseudo-labeled data if the threshold is not carefully adjusted. In addition, low-confidence probability samples are frequently disregarded and not employed to their full potential. In this paper, we propose a novel Pseudo-loss Estimation and Feature Adversarial Training semi-supervised framework, termed as PEFAT, to boost the performance of multi-class and multi-label medical image classification from the point of loss distribution modeling and adversarial training. Specifically, we develop a trustworthy data selection scheme to split a high-quality pseudo-labeled set, inspired by the dividable pseudo-loss assumption that clean data tend to show lower loss while noise data is the opposite. Instead of directly discarding these samples with low-quality pseudo-labels, we present a novel regularization approach to learn discriminate information from them via injecting adversarial noises at the feature-level to smooth the decision boundary. Experimental results on three medical and two natural image benchmarks validate that our PEFAT can achieve a promising performance and surpass other state-of-the-art methods. The code is available at https://github.com/maxwell0027/PEFAT.

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
PublisherIEEE Computer Society
Pages15671-15680
Number of pages10
ISBN (Electronic)9798350301298
DOIs
StatePublished - 2023
Event2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 - Vancouver, Canada
Duration: 18 Jun 202322 Jun 2023

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2023-June
ISSN (Print)1063-6919

Conference

Conference2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
Country/TerritoryCanada
CityVancouver
Period18/06/2322/06/23

Keywords

  • Medical and biological vision
  • cell microscopy

Fingerprint

Dive into the research topics of 'PEFAT: Boosting Semi-Supervised Medical Image Classification via Pseudo-Loss Estimation and Feature Adversarial Training'. Together they form a unique fingerprint.

Cite this