Abstract
Hypochlorite (ClO−) as a highly reactive oxygen species not only acts as a powerful “guarder” in innate host defense but also regulates inflammation-related pathological conditions. Despite the availability of fluorescence probes for detection of ClO− in cells, most of them can only detect ClO− in single cellular organelle, limiting the capability to fully elucidate the synergistic effect of different organelles on the generation of ClO−. This study proposes a nanoprobe cocktail approach for multicolor and multiorganelle imaging of ClO− in cells. Two semiconducting oligomers with different π-conjugation length are synthesized, both of which contain phenothiazine to specifically react with ClO− but show different fluorescent color responses. These sensing components are self-assembled into the nanoprobes with the ability to target cellular lysosome and mitochondria, respectively. The mixture of these nanoprobes forms a nano-cocktail that allows for simultaneous imaging of elevated level of ClO− in lysosome and mitochondria according to fluorescence color variations under selective excitation of each nanoprobe. Thus, this study provides a general concept to design probe cocktails for multilocal and multicolor imaging.
Original language | English |
---|---|
Article number | 1700493 |
Journal | Advanced Functional Materials |
Volume | 27 |
Issue number | 23 |
DOIs | |
State | Published - 20 Jun 2017 |
Externally published | Yes |
Keywords
- activatable probes
- fluorescence imaging
- nanoparticles
- reactive oxygen species