Optimum structural design of thermal protection using photonic crystal material considering thermophysical properties in micro/nanoscale

Y. Q. Wei, H. C. Zhang, Y. Zhao, J. L. Wang, Y. Li, G. N. Xie

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

With the rapid development of the supersonic aircraft technology, tremendously, the aircraft Mach numbers get higher and higher, but on the other hand, the working condition become worse and worse. The photonic crystal material which is formed by the periodic micro/nanoscale structures can generate the photonic band gaps, and the photonic band gaps could reflect the energy of the electromagnetic wave effectively. Consequently, the photonic crystal material turns into the newly-developing hotspot on the field of thermal protection for the supersonic aircraft. In this paper, the aircraft states of Mach 6 are set as the target operating condition, and 5 optimum proposals are presented for the structures of typical photonic crystal material. The energy which gets into the body material is calculated; Based on the theory of the electromagnetic field, using the method of transmission matrix and Plane Wave Expansion (PWE), the characteristics of the photonic band gaps for one-and-three dimensional photonic crystals are calculated. Finally, the characteristics of the photonic band gaps are discussed, and optimal design for the performance of the photonic crystal material thermal protection are proposed.

Original languageEnglish
Title of host publicationMicro/Nanofluidics and Lab-on-a-Chip; Nanofluids; Micro/Nanoscale Interfacial Transport Phenomena; Micro/Nanoscale Boiling and Condensation Heat Transfer; Micro/Nanoscale Thermal Radiation; Micro/Nanoscale Energy Devices and Systems
PublisherAmerican Society of Mechanical Engineers
ISBN (Electronic)9780791849651
DOIs
StatePublished - 2016
EventASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2016 - Biopolis, Singapore
Duration: 4 Jan 20166 Jan 2016

Publication series

NameASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2016
Volume1

Conference

ConferenceASME 2016 5th International Conference on Micro/Nanoscale Heat and Mass Transfer, MNHMT 2016
Country/TerritorySingapore
CityBiopolis
Period4/01/166/01/16

Keywords

  • Aerodynamic heating
  • Optimal design
  • Photonic crystal
  • Plane Wave Expansion
  • Supersonic aircraft

Fingerprint

Dive into the research topics of 'Optimum structural design of thermal protection using photonic crystal material considering thermophysical properties in micro/nanoscale'. Together they form a unique fingerprint.

Cite this