TY - JOUR
T1 - Optimization of bi-impulsive Earth-Moon transfers using periodic orbits
AU - Tan, Minghu
AU - Zhang, Ke
AU - Wang, Jingyu
N1 - Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature.
PY - 2021/2
Y1 - 2021/2
N2 - Low-energy bi-impulsive Earth-Moon transfers are investigated by using periodic orbits. Two Earth-Moon transfer design strategies in the CR3BP are proposed, termed direct and indirect design strategy. In the direct design strategy, periodic orbits which approach both vicinities of the Earth and Moon are selected as candidate periodic orbits, which can provide an initial guess of bi-impulsive Earth-Moon transfers. In the indirect design strategy, new bi-impulsive Earth-Moon transfers can be designed by patching together a bi-impulsive Earth-Moon transfer and a candidate periodic orbit which can approach the vicinity of the Moon. Optimizations in the CR3BP are undertaken based on the Gradient Descent method. Finally, bi-impulsive Earth-Moon transfer design and optimizations in the Sun-Earth-Moon bi-circular model (BCM) are carried out, using bi-impulsive Earth-Moon transfers in the CR3BP as initial guesses. Results show that the bi-impulsive Earth-Moon transfer in the CR3BP can serve as a good approximation for the BCM. Moreover, numerical results indicate that the optimal transfers in the BCM have the potential to be of lower cost in terms of velocity impulse than optimal transfers in the CR3BP.
AB - Low-energy bi-impulsive Earth-Moon transfers are investigated by using periodic orbits. Two Earth-Moon transfer design strategies in the CR3BP are proposed, termed direct and indirect design strategy. In the direct design strategy, periodic orbits which approach both vicinities of the Earth and Moon are selected as candidate periodic orbits, which can provide an initial guess of bi-impulsive Earth-Moon transfers. In the indirect design strategy, new bi-impulsive Earth-Moon transfers can be designed by patching together a bi-impulsive Earth-Moon transfer and a candidate periodic orbit which can approach the vicinity of the Moon. Optimizations in the CR3BP are undertaken based on the Gradient Descent method. Finally, bi-impulsive Earth-Moon transfer design and optimizations in the Sun-Earth-Moon bi-circular model (BCM) are carried out, using bi-impulsive Earth-Moon transfers in the CR3BP as initial guesses. Results show that the bi-impulsive Earth-Moon transfer in the CR3BP can serve as a good approximation for the BCM. Moreover, numerical results indicate that the optimal transfers in the BCM have the potential to be of lower cost in terms of velocity impulse than optimal transfers in the CR3BP.
KW - Bi-impulsive transfer
KW - Circular restricted three-body problem
KW - Optimization
KW - Periodic orbit
UR - http://www.scopus.com/inward/record.url?scp=85100524110&partnerID=8YFLogxK
U2 - 10.1007/s10509-021-03926-6
DO - 10.1007/s10509-021-03926-6
M3 - 文章
AN - SCOPUS:85100524110
SN - 0004-640X
VL - 366
JO - Astrophysics and Space Science
JF - Astrophysics and Space Science
IS - 2
M1 - 19
ER -