Optimal dimensionality discriminant analysis and its application to image recognition

Feiping Nie, Shiming Xiang, Yangqiu Song, Changshui Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

13 Scopus citations

Abstract

Dimensionality reduction is an important issue when facing high-dimensional data. For supervised dimensionality reduction, Linear Discriminant Analysis (LDA) is one of the most popular methods and has been successfully applied in many classification problems. However, there are several drawbacks in LDA. First, it suffers from the singularity problem, which makes it hard to preform. Second, IDA has the distribution assumption which may make it fail in applications where the distribution is more complex than Gaussian. Third, IDA can not determine the optimal dimensionality for discriminant analysis, which is an important issue but has often been neglected previously. In this paper, we propose a new algorithm and endeavor to solve all these three problems. Furthermore, we present that our method can be extended to the two-dimensional case, in which the optimal dimensionalities of the two projection matrices can be determined simultaneously. Experimental results show that our methods are effective and demonstrate much higher performance in comparison to LDA.

Original languageEnglish
Title of host publication2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR'07
DOIs
StatePublished - 2007
Externally publishedYes
Event2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR'07 - Minneapolis, MN, United States
Duration: 17 Jun 200722 Jun 2007

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR'07
Country/TerritoryUnited States
CityMinneapolis, MN
Period17/06/0722/06/07

Fingerprint

Dive into the research topics of 'Optimal dimensionality discriminant analysis and its application to image recognition'. Together they form a unique fingerprint.

Cite this