One-pot method for obtaining hydrophilic tetracycline-imprinted particles via precipitation polymerization in ethanol

Chunyan Zhao, Jiangdong Dai, Zhiping Zhou, Xiaohui Dai, Yongli Zou, Ping Yu, Tianbian Zou, Chunxiang Li, Yongsheng Yan

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

In this study, we used a green, one-pot method to synthesize hydrophilic molecularly imprinted polymers (MIPs) via the precipitation polymerization of hydrophilic monomers in ethanol. The as-prepared materials were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, dynamic light scattering, and water contact angle measurements (27.3 ± 0.1°). As compared to the imprinting and nonimprinting processes, tetracycline (TC), as a template molecule, had an important effect on the morphology of the MIPs, and the possible mechanism is discussed in detail. We also discuss the effects of the parameters on the binding performance as determined by batch adsorption experiments in pure water. The adsorption capacity increased with increasing concentration and temperature at an optimum pH of 5.0. The Langmuir isotherm fitted the data better, with a maximal concentration of 45.75 μmol/g at 318 K. The kinetic properties of the MIPs (within 3.0 h) toward TC were analyzed with pseudo-first-order and pseudo-second-order kinetic equations and the intraparticle diffusion model. The MIPs exhibited specific recognition toward TC, and other competitive antibiotics were used as references. All of the results indicate that the MIPs exhibited a large adsorption capacity and great specific recognition for TC. The high affinity to TC of the MIPs, with its fast and easy fabrication, provides them with potential applications in the selective separation of the TC antibiotics from an aqueous environment.

Original languageEnglish
Article number40071
JournalJournal of Applied Polymer Science
Volume131
Issue number7
DOIs
StatePublished - 5 Apr 2014
Externally publishedYes

Keywords

  • adsorption
  • molecular recognition
  • properties and characterization
  • radical polymerization
  • separation techniques

Fingerprint

Dive into the research topics of 'One-pot method for obtaining hydrophilic tetracycline-imprinted particles via precipitation polymerization in ethanol'. Together they form a unique fingerprint.

Cite this