On the compromise between noise reduction and speech/noise spatial information preservation in binaural speech enhancement

Xin Leng, Jingdong Chen, Jacob Benesty

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

Spatial information is important for human perception of speech and sound signals. However, this information is often either distorted or completely neglected in noise reduction because it is challenging, to say the least, to achieve optimal noise reduction and accurate spatial information preservation at the same time. This paper studies the problem of binaural speech enhancement. By jointly diagonalizing the speech and noise correlation matrices, we present a method to construct the noise reduction filter as a linear combination of different eigenvectors, which span a certain subspace of the entire space. A different dimension of the subspace gives a different trade-off between noise reduction and speech/noise spatial information preservation. On the one side, if the dimension is equal to 1, maximum noise reduction is achieved but at the price of significant spatial information distortion. On the other extreme, if the dimension of the subspace is equal to that of the entire space, spatial information is accurately preserved but at the cost of no noise reduction. Therefore, one can achieve different levels of compromises between the amount of noise reduction and the level of speech/noise spatial information preservation by adjusting the dimension of the used subspace.

Original languageEnglish
Pages (from-to)3151-3162
Number of pages12
JournalJournal of the Acoustical Society of America
Volume149
Issue number5
DOIs
StatePublished - 1 May 2021

Fingerprint

Dive into the research topics of 'On the compromise between noise reduction and speech/noise spatial information preservation in binaural speech enhancement'. Together they form a unique fingerprint.

Cite this