TY - GEN
T1 - Numerical study on flow characteristics of liquid jet in airflows
AU - Jiang, Le
AU - Liu, Zhenxia
AU - Lyu, Yaguo
AU - Zhu, Pengfei
N1 - Publisher Copyright:
Copyright © 2019 ASME.
PY - 2019
Y1 - 2019
N2 - The interaction between the fuel jet, the oil jet and the airflow is involved in the afterburner (or ramjet combustion chamber) and the lubricating oil system of the aero-engine respectively. The latter mainly studies the penetration depth of the oil jet into the airflow, the oil jet breakup position and so on. In the under-race lubrication system, the oil jet is deflected due to the high-speed rotation of the oil scoop and some droplets, ligaments are separated. The deflection of the oil jet and the splash of droplets may affect the oil capture efficiency of the under-race lubrication system. At the same time, the configuration of the oil jet nozzle will also have a certain impact on the oil capture efficiency. Therefore, it is necessary to carry out research on the flow characteristics of the oil jet in the airflow, and provide reference for the oil jet nozzle configurations of the under-race lubrication system. In this paper, the calculation results show that the Couple Level-Set and Volume of Fluid (CLSVOF) method is better than the Volume of Fluid (VOF) method. The correlations between the coordinate of the oil jet breakup positions and the liquid-air momentum ratio were concluded. The equation of the trajectory curve was derived for the jet column trajectory before breakup. The difference of the oil jet flow characteristics between single jet nozzle and the twin jet nozzle and the tandem jet nozzle configuration is also studied. Finally, the design method under the tandem jet nozzle configuration is given.
AB - The interaction between the fuel jet, the oil jet and the airflow is involved in the afterburner (or ramjet combustion chamber) and the lubricating oil system of the aero-engine respectively. The latter mainly studies the penetration depth of the oil jet into the airflow, the oil jet breakup position and so on. In the under-race lubrication system, the oil jet is deflected due to the high-speed rotation of the oil scoop and some droplets, ligaments are separated. The deflection of the oil jet and the splash of droplets may affect the oil capture efficiency of the under-race lubrication system. At the same time, the configuration of the oil jet nozzle will also have a certain impact on the oil capture efficiency. Therefore, it is necessary to carry out research on the flow characteristics of the oil jet in the airflow, and provide reference for the oil jet nozzle configurations of the under-race lubrication system. In this paper, the calculation results show that the Couple Level-Set and Volume of Fluid (CLSVOF) method is better than the Volume of Fluid (VOF) method. The correlations between the coordinate of the oil jet breakup positions and the liquid-air momentum ratio were concluded. The equation of the trajectory curve was derived for the jet column trajectory before breakup. The difference of the oil jet flow characteristics between single jet nozzle and the twin jet nozzle and the tandem jet nozzle configuration is also studied. Finally, the design method under the tandem jet nozzle configuration is given.
UR - http://www.scopus.com/inward/record.url?scp=85075331486&partnerID=8YFLogxK
U2 - 10.1115/GT2019-91076
DO - 10.1115/GT2019-91076
M3 - 会议稿件
AN - SCOPUS:85075331486
T3 - Proceedings of the ASME Turbo Expo
BT - Aircraft Engine; Fans and Blowers; Marine; Honors and Awards
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, GT 2019
Y2 - 17 June 2019 through 21 June 2019
ER -