Numerical investigation of non-axisymmetric endwalls in a high pressure axial flow turbine

Zhenzhe Na, Bo Liu

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

In this paper, an optimization system was applied to design the non-axisymmetric endwalls for the stator of a high pressure axial flow turbine. This optimization system combines the endwall parameterization, 3D Navier-Stokes flow field calculation and genetic algorithm based on artificial neural network, which has the advantages of flexible geometry representation and automatic design of the optimal non axisymmetric endwalls. And, the 3D steady flow field calculation was carried out to analyze the detailed behavior of complex flow structures pre and post optimization and to examine the influences of the optimized endwalls on the stage performance as well. The results of investigation show that the optimized non axisymmetric endwalls can significantly decrease the flow loss in the stator, but also affect other aerodynamic parameters at the stator exit, especially the flow angle, and then the flow loss at the rotor exit caused by both the passage vortex in the rotor passage and the tip leakage vortex were increased by changing the incidence angle of the rotor due to the non-axisymmetric endwalls. Finally, the stage performance of the HP turbine is not improved as expected.

Original languageEnglish
Title of host publicationTurbomachinery
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791856635, 9780791856635
DOIs
StatePublished - 2015
EventASME Turbo Expo 2015: Turbine Technical Conference and Exposition, GT 2015 - Montreal, Canada
Duration: 15 Jun 201519 Jun 2015

Publication series

NameProceedings of the ASME Turbo Expo
Volume2A

Conference

ConferenceASME Turbo Expo 2015: Turbine Technical Conference and Exposition, GT 2015
Country/TerritoryCanada
CityMontreal
Period15/06/1519/06/15

Fingerprint

Dive into the research topics of 'Numerical investigation of non-axisymmetric endwalls in a high pressure axial flow turbine'. Together they form a unique fingerprint.

Cite this