TY - GEN
T1 - Novel view synthesis from only a 6-DoF camera pose by two-stage networks
AU - Guo, Xiang
AU - Li, Bo
AU - Dai, Yuchao
AU - Zhang, Tongxin
AU - Deng, Hui
N1 - Publisher Copyright:
© 2020 IEEE
PY - 2020
Y1 - 2020
N2 - Novel view synthesis is a challenging problem in computer vision and robotics. Different from the existing works, which need the reference images or 3D models of the scene to generate images under novel views, we propose a novel paradigm to this problem. That is, we synthesize the novel view from only a 6-DoF camera pose directly. Although this setting is the most straightforward way, there are few works addressing it. While, our experiments demonstrate that, with a concise CNN, we could get a meaningful parametric model that could reconstruct the correct scenery images only from the 6-DoF pose. To this end, we propose a two-stage learning strategy, which consists of two consecutive CNNs: GenNet and RefineNet. GenNet generates a coarse image from a camera pose. RefineNet is a generative adversarial network that refines the coarse image. In this way, we decouple the geometric relationship between mapping and texture detail rendering. Extensive experiments conducted on the public datasets prove the effectiveness of our method. We believe this paradigm is of high research and application value and could be an important direction in novel view synthesis.
AB - Novel view synthesis is a challenging problem in computer vision and robotics. Different from the existing works, which need the reference images or 3D models of the scene to generate images under novel views, we propose a novel paradigm to this problem. That is, we synthesize the novel view from only a 6-DoF camera pose directly. Although this setting is the most straightforward way, there are few works addressing it. While, our experiments demonstrate that, with a concise CNN, we could get a meaningful parametric model that could reconstruct the correct scenery images only from the 6-DoF pose. To this end, we propose a two-stage learning strategy, which consists of two consecutive CNNs: GenNet and RefineNet. GenNet generates a coarse image from a camera pose. RefineNet is a generative adversarial network that refines the coarse image. In this way, we decouple the geometric relationship between mapping and texture detail rendering. Extensive experiments conducted on the public datasets prove the effectiveness of our method. We believe this paradigm is of high research and application value and could be an important direction in novel view synthesis.
UR - http://www.scopus.com/inward/record.url?scp=85110537056&partnerID=8YFLogxK
U2 - 10.1109/ICPR48806.2021.9413261
DO - 10.1109/ICPR48806.2021.9413261
M3 - 会议稿件
AN - SCOPUS:85110537056
T3 - Proceedings - International Conference on Pattern Recognition
SP - 5028
EP - 5035
BT - Proceedings of ICPR 2020 - 25th International Conference on Pattern Recognition
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 25th International Conference on Pattern Recognition, ICPR 2020
Y2 - 10 January 2021 through 15 January 2021
ER -