TY - GEN
T1 - Nonnegative Spectral Clustering with Discriminative Regularization
AU - Yang, Yi
AU - Shen, Heng Tao
AU - Nie, Feiping
AU - Ji, Rongrong
AU - Zhou, Xiaofang
N1 - Publisher Copyright:
Copyright © 2011, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2011/8/11
Y1 - 2011/8/11
N2 - Clustering is a fundamental research topic in the field of data mining. Optimizing the objective functions of clustering algorithms, e.g. normalized cut and k-means, is an NP-hard optimization problem. Existing algorithms usually relax the elements of cluster indicator matrix from discrete values to continuous ones. Eigenvalue decomposition is then performed to obtain a relaxed continuous solution, which must be discretized. The main problem is that the signs of the relaxed continuous solution are mixed. Such results may deviate severely from the true solution, making it a nontrivial task to get the cluster labels. To address the problem, we impose an explicit nonnegative constraint for a more accurate solution during the relaxation. Besides, we additionally introduce a discriminative regularization into the objective to avoid overfitting. A new iterative approach is proposed to optimize the objective. We show that the algorithm is a general one which naturally leads to other extensions. Experiments demonstrate the effectiveness of our algorithm.
AB - Clustering is a fundamental research topic in the field of data mining. Optimizing the objective functions of clustering algorithms, e.g. normalized cut and k-means, is an NP-hard optimization problem. Existing algorithms usually relax the elements of cluster indicator matrix from discrete values to continuous ones. Eigenvalue decomposition is then performed to obtain a relaxed continuous solution, which must be discretized. The main problem is that the signs of the relaxed continuous solution are mixed. Such results may deviate severely from the true solution, making it a nontrivial task to get the cluster labels. To address the problem, we impose an explicit nonnegative constraint for a more accurate solution during the relaxation. Besides, we additionally introduce a discriminative regularization into the objective to avoid overfitting. A new iterative approach is proposed to optimize the objective. We show that the algorithm is a general one which naturally leads to other extensions. Experiments demonstrate the effectiveness of our algorithm.
UR - http://www.scopus.com/inward/record.url?scp=85167619203&partnerID=8YFLogxK
M3 - 会议稿件
AN - SCOPUS:85167619203
T3 - Proceedings of the 25th AAAI Conference on Artificial Intelligence, AAAI 2011
SP - 555
EP - 560
BT - Proceedings of the 25th AAAI Conference on Artificial Intelligence, AAAI 2011
PB - AAAI press
T2 - 25th AAAI Conference on Artificial Intelligence, AAAI 2011
Y2 - 7 August 2011 through 11 August 2011
ER -