Nonlinear characteristics for rotatable magnetically coupling piezoelectric energy harvesters

Junyi Cao, Shengxi Zhou, Daniel J. Inman

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

This paper investigates the nonlinear dynamic characteristics of a magnetically coupled piezoelectric energy harvesters under low frequency excitation, where the angle of external magnetic field is adjustable. The nonlinear dynamic equation with the identified nonlinear magnetic force is derived to describe the electromechanical interaction of variable inclination angle harvesters. The effect of excitation amplitude and frequency on dynamic behavior is proposed by using the phase trajectory and bifurcation diagram. The numerical analysis shows that a rotatable magnetically coupling energy harvesting system exhibits rich nonlinear characteristics with the change of external magnet inclination angle. The nonlinear route to and from large amplitude high energy motion can be clearly observed. It is demonstrated numerically and experimentally that lumped parameters equations with an identified polynomials for magnetic force could adequately describe the characteristics of nonlinear energy harvester. The rotating magnetically coupled energy harvester possesses the usable frequency bandwidth over a wide range of low frequency excitation by adjusting the angular orientation.

Original languageEnglish
Title of host publication26th Conference on Mechanical Vibration and Noise
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791846414
DOIs
StatePublished - 2014
Externally publishedYes
EventASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2014 - Buffalo, United States
Duration: 17 Aug 201420 Aug 2014

Publication series

NameProceedings of the ASME Design Engineering Technical Conference
Volume8

Conference

ConferenceASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, IDETC/CIE 2014
Country/TerritoryUnited States
CityBuffalo
Period17/08/1420/08/14

Fingerprint

Dive into the research topics of 'Nonlinear characteristics for rotatable magnetically coupling piezoelectric energy harvesters'. Together they form a unique fingerprint.

Cite this