TY - GEN
T1 - Non-contact Pain Recognition from Video Sequences with Remote Physiological Measurements Prediction
AU - Yang, Ruijing
AU - Guan, Ziyu
AU - Yu, Zitong
AU - Feng, Xiaoyi
AU - Peng, Jinye
AU - Zhao, Guoying
N1 - Publisher Copyright:
© 2021 International Joint Conferences on Artificial Intelligence. All rights reserved.
PY - 2021
Y1 - 2021
N2 - Automatic pain recognition is paramount for medical diagnosis and treatment. The existing works fall into three categories: assessing facial appearance changes, exploiting physiological cues, or fusing them in a multi-modal manner. However, (1) appearance changes are easily affected by subjective factors which impedes objective pain recognition. Besides, the appearance-based approaches ignore long-range spatial-temporal dependencies that are important for modeling expressions over time; (2) the physiological cues are obtained by attaching sensors on human body, which is inconvenient and uncomfortable. In this paper, we present a novel multi-task learning framework which encodes both appearance changes and physiological cues in a non-contact manner for pain recognition. The framework is able to capture both local and long-range dependencies via the proposed attention mechanism for the learned appearance representations, which are further enriched by temporally attended physiological cues (remote photoplethysmography, rPPG) that are recovered from videos in the auxiliary task. This framework is dubbed rPPG-enriched Spatio-Temporal Attention Network (rSTAN) and allows us to establish the state-of-the-art performance of non-contact pain recognition on publicly available pain databases. It demonstrates that rPPG predictions can be used as an auxiliary task to facilitate non-contact automatic pain recognition.
AB - Automatic pain recognition is paramount for medical diagnosis and treatment. The existing works fall into three categories: assessing facial appearance changes, exploiting physiological cues, or fusing them in a multi-modal manner. However, (1) appearance changes are easily affected by subjective factors which impedes objective pain recognition. Besides, the appearance-based approaches ignore long-range spatial-temporal dependencies that are important for modeling expressions over time; (2) the physiological cues are obtained by attaching sensors on human body, which is inconvenient and uncomfortable. In this paper, we present a novel multi-task learning framework which encodes both appearance changes and physiological cues in a non-contact manner for pain recognition. The framework is able to capture both local and long-range dependencies via the proposed attention mechanism for the learned appearance representations, which are further enriched by temporally attended physiological cues (remote photoplethysmography, rPPG) that are recovered from videos in the auxiliary task. This framework is dubbed rPPG-enriched Spatio-Temporal Attention Network (rSTAN) and allows us to establish the state-of-the-art performance of non-contact pain recognition on publicly available pain databases. It demonstrates that rPPG predictions can be used as an auxiliary task to facilitate non-contact automatic pain recognition.
UR - http://www.scopus.com/inward/record.url?scp=85125474805&partnerID=8YFLogxK
U2 - 10.24963/ijcai.2021/170
DO - 10.24963/ijcai.2021/170
M3 - 会议稿件
AN - SCOPUS:85125474805
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 1231
EP - 1237
BT - Proceedings of the 30th International Joint Conference on Artificial Intelligence, IJCAI 2021
A2 - Zhou, Zhi-Hua
PB - International Joint Conferences on Artificial Intelligence
T2 - 30th International Joint Conference on Artificial Intelligence, IJCAI 2021
Y2 - 19 August 2021 through 27 August 2021
ER -