TY - JOUR
T1 - Nanostructured ultra-low-κ porous fluoropolymer composite films via plasma co-polymerization of hydrophobic and hydrophilic monomers and subsequent hydrolysis treatment
AU - Feng, Jiachun
AU - Huang, Wei
PY - 2007/9
Y1 - 2007/9
N2 - A new approach to fabricate porous nanostructured fluoropolymer composite films with a low dielectric constant (κ) was put forward at the first time. Initially, a film (pp-HDFD-PEGMA film) composed of dense, uniform, and well-defined nanospheres was controllably deposited on hydrogen-terminated silicon substrates by simultaneous plasma polymerization and deposition of a fluorine-containing hydrophobic monomer, 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-1-decene (HDFD), and a hydrophilic monomer poly(ethylene glycol) methacrylate (PEGMA), using a pulsed plasma polymerization technique. Then, by hydrolysing the plasma co-deposited film in aqueous hydrochloric acid solution to effectively remove the soluble nanospheres or fragments which mainly derived from PEGMA, a nanoporous fluorocarbon film was achieved. Subsequently, a top poly(tetrafluoroethylene) layer was deposited via the magnetron sputtering process to cap and complete an encapsulated structure. The resulting bilayer composite film consisting of a layer of nanostructured fluorocarbon porous film and a layer of encapsulation fluorocarbon polymer has a κ value of 1.8. The morphology investigation of the plasma co-deposited film prior and after acid-treatment by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) confirmed the form of the nanospheres and nanoporous structure, while the chemical composition and structure analysis by X-ray photoelectron spectroscopy (XPS) revealed that after the acid-treatment, the porous nanostructured film are composed predominantly of mainly fluorocarbon polymer.
AB - A new approach to fabricate porous nanostructured fluoropolymer composite films with a low dielectric constant (κ) was put forward at the first time. Initially, a film (pp-HDFD-PEGMA film) composed of dense, uniform, and well-defined nanospheres was controllably deposited on hydrogen-terminated silicon substrates by simultaneous plasma polymerization and deposition of a fluorine-containing hydrophobic monomer, 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-1-decene (HDFD), and a hydrophilic monomer poly(ethylene glycol) methacrylate (PEGMA), using a pulsed plasma polymerization technique. Then, by hydrolysing the plasma co-deposited film in aqueous hydrochloric acid solution to effectively remove the soluble nanospheres or fragments which mainly derived from PEGMA, a nanoporous fluorocarbon film was achieved. Subsequently, a top poly(tetrafluoroethylene) layer was deposited via the magnetron sputtering process to cap and complete an encapsulated structure. The resulting bilayer composite film consisting of a layer of nanostructured fluorocarbon porous film and a layer of encapsulation fluorocarbon polymer has a κ value of 1.8. The morphology investigation of the plasma co-deposited film prior and after acid-treatment by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) confirmed the form of the nanospheres and nanoporous structure, while the chemical composition and structure analysis by X-ray photoelectron spectroscopy (XPS) revealed that after the acid-treatment, the porous nanostructured film are composed predominantly of mainly fluorocarbon polymer.
KW - Co-polymerization
KW - Dielectric
KW - Hydrolysis
KW - Plasma
KW - Porous
UR - http://www.scopus.com/inward/record.url?scp=34548250425&partnerID=8YFLogxK
U2 - 10.1016/j.eurpolymj.2007.06.018
DO - 10.1016/j.eurpolymj.2007.06.018
M3 - 文章
AN - SCOPUS:34548250425
SN - 0014-3057
VL - 43
SP - 3773
EP - 3779
JO - European Polymer Journal
JF - European Polymer Journal
IS - 9
ER -