TY - JOUR
T1 - MXene-derived TiC/SiBCN ceramics with excellent electromagnetic absorption and high-temperature resistance
AU - Ding, Jinxue
AU - Chen, Fengbo
AU - Chen, Jianxin
AU - Liang, Jin
AU - Kong, Jie
N1 - Publisher Copyright:
© 2020 American Ceramic Society (ACERS)
PY - 2021/4
Y1 - 2021/4
N2 - Demand for high-performance electromagnetic (EM) wave absorbing materials with high-temperature resistance is always urgent for application in a harsh environment. In this contribution, two-dimensional material, Ti3C2Tx MXene, was introduced into a hyperbranched polyborosilazane. After pyrolyzation, the as-prepared TiC/SiBCN ceramics present excellent EM wave absorption in X-band. The TiC nanograins appearing after annealing provide multilevel reflection and interface polarization. Dipole polarization formed at interface defects, in company with interfacial polarization, also makes a great contribution to enhanced EM wave absorption. The TiC/SiBCN nanocomplex prepared with 5 wt% Ti3C2Tx MXene possesses a minimum reflection coefficient of −45.44 dB at 10.93 GHz and abroad bandwidth 8.4 and 12.4 GHz, almost covering the entire X-band. Tuning the thickness in the range of 2.35-2.54 mm, the effective absorption band can achieve the entire X-band. And the EM wave absorbing performance has been maintained to a large extent at 600°C with the minimum reflection coefficient of −26.12 dB at 12.13 GHz and the effective absorption bandwidth of 2 GHz. Last but not the least, TiC/SiBCN ceramics offer a good thermal stability in argon as well as in air atmosphere, making it possible to serve in high-temperature detrimental environments. This study is expected to provide a new perspective for the design of high-performance absorbing materials that are able to be used in harsh environments, especially in high temperatures.
AB - Demand for high-performance electromagnetic (EM) wave absorbing materials with high-temperature resistance is always urgent for application in a harsh environment. In this contribution, two-dimensional material, Ti3C2Tx MXene, was introduced into a hyperbranched polyborosilazane. After pyrolyzation, the as-prepared TiC/SiBCN ceramics present excellent EM wave absorption in X-band. The TiC nanograins appearing after annealing provide multilevel reflection and interface polarization. Dipole polarization formed at interface defects, in company with interfacial polarization, also makes a great contribution to enhanced EM wave absorption. The TiC/SiBCN nanocomplex prepared with 5 wt% Ti3C2Tx MXene possesses a minimum reflection coefficient of −45.44 dB at 10.93 GHz and abroad bandwidth 8.4 and 12.4 GHz, almost covering the entire X-band. Tuning the thickness in the range of 2.35-2.54 mm, the effective absorption band can achieve the entire X-band. And the EM wave absorbing performance has been maintained to a large extent at 600°C with the minimum reflection coefficient of −26.12 dB at 12.13 GHz and the effective absorption bandwidth of 2 GHz. Last but not the least, TiC/SiBCN ceramics offer a good thermal stability in argon as well as in air atmosphere, making it possible to serve in high-temperature detrimental environments. This study is expected to provide a new perspective for the design of high-performance absorbing materials that are able to be used in harsh environments, especially in high temperatures.
UR - http://www.scopus.com/inward/record.url?scp=85097800635&partnerID=8YFLogxK
U2 - 10.1111/jace.17596
DO - 10.1111/jace.17596
M3 - 文章
AN - SCOPUS:85097800635
SN - 0002-7820
VL - 104
SP - 1772
EP - 1784
JO - Journal of the American Ceramic Society
JF - Journal of the American Ceramic Society
IS - 4
ER -