Multifunctional shape-dependent plasmonic nanoprobe by enzymatic etching of single gold triangular nanoplate

Ning Feng, Jingjing Shen, Yu Chen, Chang Li, Yanling Hu, Lei Zhang, Shufen Chen, Quli Fan, Wei Huang, Lianhui Wang

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Hydrogen peroxide (H2O2), as a signaling molecule, plays a vital role in a wide variety of signaling transduction processes, aging, and diseases. However, the excessive production of H2O2 causes various diseases. Herein, we develop a novel method for H2O2 detection in live cells via dark-field scattering spectroscopy with gold triangular nanoprisms (AuTNPs) as probes. The corners of AuTNPs would be gradually oxidatively etched by the strong coordination of Br which is generated by enzymatic reactions in the presence of horseradish peroxidase (HRP), bromide ion and trace hydrogen peroxide. Benefitting from the morphological change, the single AuTNP based plasmonic nanoprobe shows notable blueshifts and scattering color changes which could be real-time monitored under the dark-field microscopy. The peak position in the scattering spectra of individual AuTNP blueshifts linearly with the increase of H2O2 concentration, and exhibits high sensitivity to H2O2 in a large range from 2.5 to 100 µM with a low detection limit (LOD) of 0.74 µM. Moreover, the experimental results were supported by the simulated results via the finite-difference time-domain (FDTD) method. The nanoprobes have been further used for intracellular H2O2 detection in live cells. Besides, the etching of AuTNP also provides an alternative method to design novel plasmonic logic chips and write-once plasmonic memories. [Figure not available: see fulltext.].

Original languageEnglish
Pages (from-to)3364-3370
Number of pages7
JournalNano Research
Volume13
Issue number12
DOIs
StatePublished - 1 Dec 2020

Keywords

  • HO detection
  • enzymatic etching
  • gold triangular nanoprisms
  • logic operations
  • plasmonic

Fingerprint

Dive into the research topics of 'Multifunctional shape-dependent plasmonic nanoprobe by enzymatic etching of single gold triangular nanoplate'. Together they form a unique fingerprint.

Cite this