TY - JOUR
T1 - Multibranch Mutual-Guiding Learning for Infrared Small Target Detection
AU - Li, Qiang
AU - Zhang, Wei
AU - Lu, Wanxuan
AU - Wang, Qi
N1 - Publisher Copyright:
© 2025 IEEE.
PY - 2025
Y1 - 2025
N2 - At present, many infrared target detection approaches focus on designing modules that address the two key characteristics of targets: their weak signals and small size. However, these approaches often fail to fully leverage guided learning for weak and small target content, resulting in suboptimal detection performance, particularly in terms of shape preservation and target positioning. To tackle this challenge, this article proposes a multibranch mutual-guiding learning network (MMLNet) that enhances the accuracy of infrared target detection, even in the absence of clear morphological and textural features in images. The method consists of three branches: edge, positioning, and detection, each of which is designed with a specialized module from a unique perspective. In the detection branch, we introduce a multidimensional lossless encoder optimized through a downsampling strategy and multilevel feature fusion to mitigate feature loss in small targets. In the positioning branch, a target positioning strategy is proposed to explicitly identify candidate targets from the image by means of a learnable multikernel pattern. In the edge branch, a simple architecture is adopted to enhance the ability of the model to preserve the target shape. To effectively utilize the knowledge of different branches, a mutual-guiding fusion module is developed to adjust information within and between branches. The manner adaptively utilizes the specific knowledge from each input branch. The experimental results demonstrate that the proposed method achieves comparable performance, and the visualization results show the advantages of our method in shape preservation and positioning of the targets. Our code is publicly available at https://github.com/qianngli/MMLNet.
AB - At present, many infrared target detection approaches focus on designing modules that address the two key characteristics of targets: their weak signals and small size. However, these approaches often fail to fully leverage guided learning for weak and small target content, resulting in suboptimal detection performance, particularly in terms of shape preservation and target positioning. To tackle this challenge, this article proposes a multibranch mutual-guiding learning network (MMLNet) that enhances the accuracy of infrared target detection, even in the absence of clear morphological and textural features in images. The method consists of three branches: edge, positioning, and detection, each of which is designed with a specialized module from a unique perspective. In the detection branch, we introduce a multidimensional lossless encoder optimized through a downsampling strategy and multilevel feature fusion to mitigate feature loss in small targets. In the positioning branch, a target positioning strategy is proposed to explicitly identify candidate targets from the image by means of a learnable multikernel pattern. In the edge branch, a simple architecture is adopted to enhance the ability of the model to preserve the target shape. To effectively utilize the knowledge of different branches, a mutual-guiding fusion module is developed to adjust information within and between branches. The manner adaptively utilizes the specific knowledge from each input branch. The experimental results demonstrate that the proposed method achieves comparable performance, and the visualization results show the advantages of our method in shape preservation and positioning of the targets. Our code is publicly available at https://github.com/qianngli/MMLNet.
KW - Infrared image
KW - mutual-guiding fusion
KW - shape preservation
KW - small target detection
KW - target positioning
UR - http://www.scopus.com/inward/record.url?scp=85214875514&partnerID=8YFLogxK
U2 - 10.1109/TGRS.2025.3526754
DO - 10.1109/TGRS.2025.3526754
M3 - 文章
AN - SCOPUS:85214875514
SN - 0196-2892
VL - 63
JO - IEEE Transactions on Geoscience and Remote Sensing
JF - IEEE Transactions on Geoscience and Remote Sensing
M1 - 5605710
ER -