Multi-View Subspace Clustering With Consensus Graph Contrastive Learning

Jie Zhang, Yuan Sun, Yu Guo, Zheng Wang, Feiping Nie, Fei Wang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

4 Scopus citations

Abstract

A significant challenge in multi-view clustering lies in the comprehensive extraction of consistency and complementary information from heterogeneous multi-view data. Numerous methods employ contrastive learning techniques to explore the information between views. However, the basic contrastive learning strategy does not consider cluster information when constructing sample pairs, potentially leading to the emergence of false negative pairs (FNPs). To tackle this concern, we propose a Multi-view Subspace Clustering with Consensus Graph Contrastive Learning (CGCL) model. Specifically, a self-representation layer is designed to acquire a consensus graph that elucidates the overall data distribution. Furthermore, a contrastive learning layer utilizes the cluster information embedded in the consensus graph to yield reliable sample pairs, resulting in a reduction of the detrimental FNPs and the extraction of complementary information from the various views. Extensive experiments on public datasets demonstrate the effectiveness of CGCL.

Original languageEnglish
Title of host publicationICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6340-6344
Number of pages5
ISBN (Electronic)9798350344851
DOIs
StatePublished - 2024
Event2024 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024 - Seoul, Korea, Republic of
Duration: 14 Apr 202419 Apr 2024

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (Print)1520-6149

Conference

Conference2024 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024
Country/TerritoryKorea, Republic of
CitySeoul
Period14/04/2419/04/24

Keywords

  • contrastive learning
  • multi-view clustering
  • self-representation learning
  • unsupervised learning

Fingerprint

Dive into the research topics of 'Multi-View Subspace Clustering With Consensus Graph Contrastive Learning'. Together they form a unique fingerprint.

Cite this