Multi-view feature learning with discriminative regularization

Jinglin Xu, Junwei Han, Feiping Nie

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

18 Scopus citations

Abstract

More and more multi-view data which can capture rich information from heterogeneous features are widely used in real world applications. How to integrate different types of features, and how to learn low dimensional and discriminative information from high dimensional data are two main challenges. To address these challenges, this paper proposes a novel multi-view feature learning framework, which is regularized by discriminative information and obtains a feature learning model which contains multiple discriminative feature weighting matrices for different views, and then yields multiple low dimensional features used for subsequent multi-view clustering. To optimize the formula-ble objective function, we transform the proposed framework into a trace optimization problem which obtains the global solution in a closed form. Experimental evaluations on four widely used datasets and comparisons with a number of state-of-the-art multi-view clustering algorithms demonstrate the superiority of the proposed work.

Original languageEnglish
Title of host publication26th International Joint Conference on Artificial Intelligence, IJCAI 2017
EditorsCarles Sierra
PublisherInternational Joint Conferences on Artificial Intelligence
Pages3161-3167
Number of pages7
ISBN (Electronic)9780999241103
DOIs
StatePublished - 2017
Event26th International Joint Conference on Artificial Intelligence, IJCAI 2017 - Melbourne, Australia
Duration: 19 Aug 201725 Aug 2017

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume0
ISSN (Print)1045-0823

Conference

Conference26th International Joint Conference on Artificial Intelligence, IJCAI 2017
Country/TerritoryAustralia
CityMelbourne
Period19/08/1725/08/17

Fingerprint

Dive into the research topics of 'Multi-view feature learning with discriminative regularization'. Together they form a unique fingerprint.

Cite this