Multi-subspace representation and discovery

Dijun Luo, Feiping Nie, Chris Ding, Heng Huang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

72 Scopus citations

Abstract

This paper presents the multi-subspace discovery problem and provides a theoretical solution which is guaranteed to recover the number of subspaces, the dimensions of each subspace, and the members of data points of each subspace simultaneously. We further propose a data representation model to handle noisy real world data. We develop a novel optimization approach to learn the presented model which is guaranteed to converge to global optimizers. As applications of our models, we first apply our solutions as preprocessing in a series of machine learning problems, including clustering, classification, and semi-supervised learning. We found that our method automatically obtains robust data presentation which preserves the affine subspace structures of high dimensional data and generate more accurate results in the learning tasks. We also establish a robust standalone classifier which directly utilizes our sparse and low rank representation model. Experimental results indicate our methods improve the quality of data by preprocessing and the standalone classifier outperforms some state-of-the-art learning approaches.

Original languageEnglish
Title of host publicationMachine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2011, Proceedings
Pages405-420
Number of pages16
EditionPART 2
DOIs
StatePublished - 2011
Externally publishedYes
EventEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2011 - Athens, Greece
Duration: 5 Sep 20119 Sep 2011

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
NumberPART 2
Volume6912 LNAI
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

ConferenceEuropean Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD 2011
Country/TerritoryGreece
CityAthens
Period5/09/119/09/11

Fingerprint

Dive into the research topics of 'Multi-subspace representation and discovery'. Together they form a unique fingerprint.

Cite this