Multi-class ℓ 2,1-norm support vector machine

Xiao Cai, Feiping Nie, Heng Huang, Chris Ding

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

74 Scopus citations

Abstract

Feature selection is an essential component of data mining. In many data analysis tasks where the number of data point is much less than the number of features, efficient feature selection approaches are desired to extract meaningful features and to eliminate redundant ones. In the previous study, many data mining techniques have been applied to tackle the above challenging problem. In this paper, we propose a new ℓ 2,1- norm SVM, that is, multi-class hinge loss with a structured regularization term for all the classes to naturally select features for multi-class without bothering further heuristic strategy. Rather than directly solving the multi-class hinge loss with ℓ 2,1-norm regularization minimization, which has not been solved before due to its optimization difficulty, we are the first to give an efficient algorithm bridging the new problem with a previous solvable optimization problem to do multi-class feature selection. A global convergence proof for our method is also presented. Via the proposed efficient algorithm, we select features across multiple classes with jointly sparsity, i.e., each feature has either small or large score over all classes. Comprehensive experiments have been performed on six bioinformatics data sets to show that our method can obtain better or competitive performance compared with exiting stateof- art multi-class feature selection approaches.

Original languageEnglish
Title of host publicationProceedings - 11th IEEE International Conference on Data Mining, ICDM 2011
Pages91-100
Number of pages10
DOIs
StatePublished - 2011
Externally publishedYes
Event11th IEEE International Conference on Data Mining, ICDM 2011 - Vancouver, BC, Canada
Duration: 11 Dec 201114 Dec 2011

Publication series

NameProceedings - IEEE International Conference on Data Mining, ICDM
ISSN (Print)1550-4786

Conference

Conference11th IEEE International Conference on Data Mining, ICDM 2011
Country/TerritoryCanada
CityVancouver, BC
Period11/12/1114/12/11

Keywords

  • Feature selection
  • Multi-class feature selection
  • Support vector machine

Fingerprint

Dive into the research topics of 'Multi-class ℓ 2,1-norm support vector machine'. Together they form a unique fingerprint.

Cite this