TY - JOUR
T1 - Molecule editable 3D printed polymer-derived ceramics
AU - Zhou, Shixiang
AU - Mei, Hui
AU - Chang, Peng
AU - Lu, Mingyang
AU - Cheng, Laifei
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2020/11/1
Y1 - 2020/11/1
N2 - With the demand for advanced ceramics applied under harsh conditions, highly reliable ceramic components with customized structures and specific functions are in increasing demand. 3D printing can realize an integrated design of articles from macroscale to micro-/nanoscale, as it has outstanding design flexibility, near net-shape forming, and mold-free fabrication. However, traditional ceramic raw materials are usually ceramic powders, which are hard to meet the requirements of specific 3D printing techniques. Preceramic polymers as a special precursor are suitable for a series of forming methods including 3D printing, as they can be manipulated in polymeric phases. More importantly, the molecule of preceramic polymers are editable and designable, which can meet the requirements of various 3D printing techniques by molecule modification. Desired compositions and functions can be obtained by reacting with fillers and doping metals, realizing the integrated design of function and structure. This review investigated the polymer-derived ceramics (PDC) which are formed via 3D printing techniques. Differences between ceramic powders and preceramic polymers were presented, the superiority and drawbacks of the preceramic polymers were illustrated, which may facilitate the material selection, structure design, and fabrication of reliable and tailor-made 3D printed PDC components.
AB - With the demand for advanced ceramics applied under harsh conditions, highly reliable ceramic components with customized structures and specific functions are in increasing demand. 3D printing can realize an integrated design of articles from macroscale to micro-/nanoscale, as it has outstanding design flexibility, near net-shape forming, and mold-free fabrication. However, traditional ceramic raw materials are usually ceramic powders, which are hard to meet the requirements of specific 3D printing techniques. Preceramic polymers as a special precursor are suitable for a series of forming methods including 3D printing, as they can be manipulated in polymeric phases. More importantly, the molecule of preceramic polymers are editable and designable, which can meet the requirements of various 3D printing techniques by molecule modification. Desired compositions and functions can be obtained by reacting with fillers and doping metals, realizing the integrated design of function and structure. This review investigated the polymer-derived ceramics (PDC) which are formed via 3D printing techniques. Differences between ceramic powders and preceramic polymers were presented, the superiority and drawbacks of the preceramic polymers were illustrated, which may facilitate the material selection, structure design, and fabrication of reliable and tailor-made 3D printed PDC components.
KW - 3D printing
KW - Polymer-derived ceramics
KW - Preceramic polymers
KW - Structuralization
UR - http://www.scopus.com/inward/record.url?scp=85088933553&partnerID=8YFLogxK
U2 - 10.1016/j.ccr.2020.213486
DO - 10.1016/j.ccr.2020.213486
M3 - 文献综述
AN - SCOPUS:85088933553
SN - 0010-8545
VL - 422
JO - Coordination Chemistry Reviews
JF - Coordination Chemistry Reviews
M1 - 213486
ER -