Abstract
Nickel pyrophosphate (Ni2P2O7) is considered as a potential next-generation electrode material for supercapacitors. Here, we report a new type of cathode material for supercapacitors in, which consists of rhombic dodecahedron Co3O4-C growing on two-dimensional (2D) Ni2P2O7 nanosheets. Surprisingly, Co3O4-C/Ni2P2O7 materials exhibit bright electrochemical properties with a relatively high specific capacitance of 2537.78 Fg−1 and remarkable cyclic stability (88.5% after 3000 cycles). Therefore, the prepared Co3O4-C/Ni2P2O7 electrode material is a significant candidate material for supercapacitors. The synthesis process is simple, low cost and environmentally friendly. Notably, Co3O4-C/Ni2P2O7 products have excellent electrochemical properties and are candidate electrode materials for supercapacitors. The Co3O4-C/Ni2P2O7 products have excellent electrochemical properties, which indicate the Co3O4-C/Ni2P2O7 materials imply their promising potential applications in the energy storage. Most importantly, this work provides a scalable strategy for morphology-controlled synthesis of metal oxides by recrystallization.
Original language | English |
---|---|
Article number | 122242 |
Journal | Chemical Engineering Journal |
Volume | 378 |
DOIs | |
State | Published - 15 Dec 2019 |
Externally published | Yes |
Keywords
- Anode materials
- CoO-C/NiPO
- High performance
- Metal-organic frameworks