MIPI 2022 Challenge on Quad-Bayer Re-mosaic: Dataset and Report

Qingyu Yang, Guang Yang, Jun Jiang, Chongyi Li, Ruicheng Feng, Shangchen Zhou, Wenxiu Sun, Qingpeng Zhu, Chen Change Loy, Jinwei Gu, Zhen Wang, Daoyu Li, Yuzhe Zhang, Lintao Peng, Xuyang Chang, Yinuo Zhang, Yaqi Wu, Xun Wu, Zhihao Fan, Chengjie XiaFeng Zhang, Haijin Zeng, Kai Feng, Yongqiang Zhao, Hiep Quang Luong, Jan Aelterman, Anh Minh Truong, Wilfried Philips, Xiaohong Liu, Jun Jia, Hanchi Sun, Guangtao Zhai, Longan Xiao, Qihang Xu, Ting Jiang, Qi Wu, Chengzhi Jiang, Mingyan Han, Xinpeng Li, Wenjie Lin, Youwei Li, Haoqiang Fan, Shuaicheng Liu, Rongyuan Wu, Lingchen Sun, Qiaosi Yi

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

3 Scopus citations

Abstract

Developing and integrating advanced image sensors with novel algorithms in camera systems is prevalent with the increasing demand for computational photography and imaging on mobile platforms. However, the lack of high-quality data for research and the rare opportunity for in-depth exchange of views from industry and academia constrain the development of mobile intelligent photography and imaging (MIPI). To bridge the gap, we introduce the first MIPI challenge including five tracks focusing on novel image sensors and imaging algorithms. In this paper, Quad Joint Remosaic and Denoise, one of the five tracks, working on the interpolation of Quad CFA to Bayer at full-resolution is introduced. The participants were provided with a new dataset including 70 (training) and 15 (validation) scenes of high-quality Quad and Bayer pair. In addition, for each scene, Quad of different noise level were provided at 0 dB, 24 dB and 42 dB. All the data were captured using a Quad sensor in both outdoor and indoor conditions. The final results are evaluated using objective metrics including PSNR, SSIM [6], LPIPS [10] and KLD. A detailed description of all models developed in this challenge is provided in this paper. More details of this challenge and the link to the dataset can be found in https://github.com/mipi-challenge/MIPI2022.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2022 Workshops, Proceedings
EditorsLeonid Karlinsky, Tomer Michaeli, Ko Nishino
PublisherSpringer Science and Business Media Deutschland GmbH
Pages21-35
Number of pages15
ISBN (Print)9783031250712
DOIs
StatePublished - 2023
Event17th European Conference on Computer Vision, ECCV 2022 - Tel Aviv, Israel
Duration: 23 Oct 202227 Oct 2022

Publication series

NameLecture Notes in Computer Science
Volume13805 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference17th European Conference on Computer Vision, ECCV 2022
Country/TerritoryIsrael
CityTel Aviv
Period23/10/2227/10/22

Keywords

  • Bayer
  • Denoise
  • MIPI challenge
  • Quad
  • Remosaic

Fingerprint

Dive into the research topics of 'MIPI 2022 Challenge on Quad-Bayer Re-mosaic: Dataset and Report'. Together they form a unique fingerprint.

Cite this