Mid-fidelity aero-propulsive coupling approach for distributed propulsion aircraft

Yiyuan Ma, Chaofan Wang, Zhonghua Han, Yue Wang

Research output: Contribution to journalArticlepeer-review

Abstract

The growing demand for more efficient aircraft has made the development of innovative designs critical. Distributed propeller aircraft configurations are among the most promising solutions in this quest for enhanced performance. The objective of this study is to develop an efficient wing design and optimization methodology that accounts for the aerodynamic interaction between the propeller and wing during the aircraft's preliminary design phase. Traditional methods are often imprecise, relying on empirical methods to model wing-propeller interaction, or computationally intensive, using high-fidelity Computational Fluid Dynamics (CFD) methods unsuitable for the preliminary design phase. Therefore, a method that balances computational efficiency and accuracy is crucial. This research employs mid-fidelity methods and tools to design aircraft wings while considering aerodynamic interactions between the propeller and wing. After validating the methodology and framework, aerodynamic analyses are conducted on a regional propeller aircraft, including a study of potential Distributed Electric Propulsion (DEP) variants. The aerodynamic analysis shows that propeller-induced velocities improve lift distribution and reduce induced drag by 10.7%, enhancing the lift-to-drag ratio. In the tradeoff study of DEP configurations, the eight-propeller setup demonstrated a 6% longer range and reduced drag, with the wingtip-mounted propellers effectively mitigating wingtip vortex formation. These findings highlight the potential of DEP configurations to improve aerodynamic efficiency and aircraft range.

Original languageEnglish
Article number109859
JournalAerospace Science and Technology
Volume157
DOIs
StatePublished - Feb 2025

Keywords

  • Distributed electric propulsion aircraft
  • Multidisciplinary design optimization
  • Propeller slipstream
  • Wing-propeller interaction

Fingerprint

Dive into the research topics of 'Mid-fidelity aero-propulsive coupling approach for distributed propulsion aircraft'. Together they form a unique fingerprint.

Cite this