Microwave-assisted rapid preparation of hollow carbon nanospheres@TiN nanoparticles for lithium-sulfur batteries

Jianxin Tu, Hejun Li, Jizhao Zou, Shaozhong Zeng, Qi Zhang, Liang Yu, Xierong Zeng

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Highly conductive titanium nitride (TiN) has a strong anchoring ability for lithium polysulfides (LiPSs). However, the complexity and high cost of fabrication limit their practical applications. Herein, a typical structure of hollow carbon nanospheres@TiN nanoparticles (HCNs@TiN) was designed and successfully synthesized via a microwave reduction method with the advantages of economy and efficiency. With unique structural and outstanding functional behavior, HCN@TiN-S hybrid electrodes display not only a high initial discharge capacity of 1097.8 mA h g-1 at 0.1C, but also excellent rate performance and cycling stability. After 200 cycles, a reversible capacity of 812.6 mA h g-1 is still retained, corresponding to 74% capacity retention of the original capacity and 0.13% decay rate per cycle, which are much better than those of HCNs-S electrodes.

Original languageEnglish
Pages (from-to)16909-16917
Number of pages9
JournalDalton Transactions
Volume47
Issue number47
DOIs
StatePublished - 2018

Fingerprint

Dive into the research topics of 'Microwave-assisted rapid preparation of hollow carbon nanospheres@TiN nanoparticles for lithium-sulfur batteries'. Together they form a unique fingerprint.

Cite this