TY - JOUR
T1 - Microstrucutre and thermoelectric properties of rapidly prepared Sn1−xMnxTe alloys
AU - Yang, Bin
AU - Li, Shuangming
AU - Li, Xin
AU - Feng, Songke
AU - Liu, Zhenpeng
AU - Zhong, Hong
N1 - Publisher Copyright:
© 2018, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2018/11/1
Y1 - 2018/11/1
N2 - Sn1−xMnxTe (x = 0, 0.09, 0.15, 0.20) bulk materials were prepared by melt spinning combined with spark plasma sintering process. Nanoscale grains were obtained, and the solid solubility of Mn was much enhanced by the ultrafast-cooling synthesis technique. The maximum of Seebeck coefficient and power factor are 242 µVK−1 and 19.97 µW cm−1K−2 at 873 K with the doping concentration of 15 at% Mn. A large amount of grain boundaries and doped atoms improve the scattering of heat-carrying phonons in a wide range of frequencies, and the scattering mechanisms are also explained by theoretical calculation. As a result, the minimum of lattice thermal conductivity is 0.66 µVK−1 at 873 K, the corresponding figure of merit is 1.26 for Sn0.85Mn0.15Te sample. This value is improved by 35% comparing with previously reported result. Our work indicates that melt spinning process is effective to develop SnTe related thermoelectric materials with excellent thermoelectric properties, which has the widespread commercial value and the prospects for development.
AB - Sn1−xMnxTe (x = 0, 0.09, 0.15, 0.20) bulk materials were prepared by melt spinning combined with spark plasma sintering process. Nanoscale grains were obtained, and the solid solubility of Mn was much enhanced by the ultrafast-cooling synthesis technique. The maximum of Seebeck coefficient and power factor are 242 µVK−1 and 19.97 µW cm−1K−2 at 873 K with the doping concentration of 15 at% Mn. A large amount of grain boundaries and doped atoms improve the scattering of heat-carrying phonons in a wide range of frequencies, and the scattering mechanisms are also explained by theoretical calculation. As a result, the minimum of lattice thermal conductivity is 0.66 µVK−1 at 873 K, the corresponding figure of merit is 1.26 for Sn0.85Mn0.15Te sample. This value is improved by 35% comparing with previously reported result. Our work indicates that melt spinning process is effective to develop SnTe related thermoelectric materials with excellent thermoelectric properties, which has the widespread commercial value and the prospects for development.
UR - http://www.scopus.com/inward/record.url?scp=85053050966&partnerID=8YFLogxK
U2 - 10.1007/s10854-018-0018-9
DO - 10.1007/s10854-018-0018-9
M3 - 文章
AN - SCOPUS:85053050966
SN - 0957-4522
VL - 29
SP - 18949
EP - 18956
JO - Journal of Materials Science: Materials in Electronics
JF - Journal of Materials Science: Materials in Electronics
IS - 22
ER -