Abstract
The eutectic high entropy alloys have attracted extensive attention and are considered one of the most promising new metal materials. The microstructures of large eutectic high entropy alloy ingot with excellent casting performance have been rarely reported. In this study, we have prepared a ton class eutectic high entropy alloy ingot via vacuum induction melting for the first time. The evolution of microstructure and macro-segregation from the edge region to the core of the ingot were also revealed. It was found that there was no significant macro-segregation in ton class eutectic high entropy alloy ingot, and chemical elements were distributed uniformly. The coupled growth of the primary phases and eutectic colonies were homogeneously distributed in the ingot, and there is no traditional columnar grain region from the edge region of the ingot to the core. The tensile strength of the sample in the R/2 region of the ton class ingot with elongation greater than 10% is 892.3 MPa, showing an excellent comprehensive mechanical property. This study exhibits an important guidance for the industrial application of large eutectic high entropy alloy casting ingot.
Original language | English |
---|---|
Pages (from-to) | 2008-2018 |
Number of pages | 11 |
Journal | Acta Metallurgica Sinica (English Letters) |
Volume | 37 |
Issue number | 12 |
DOIs | |
State | Published - Dec 2024 |
Keywords
- Eutectic high entropy alloy
- Mechanical properties
- Microstructure
- Segregation
- Ton class ingot