Abstract
In this account, RGO-SiCnw/SiBCN composite ceramics were fabricated using polymer derived ceramic (PDC) combined with chemical vapor infiltration (CVI) technology. Dielectric property of as-obtained RGO-SiCnw/SiBCN composite ceramics was significantly enhanced thanks to established conductive pathway through overlapped nanoscale SiCnw and micro-sized RGO. The minimum RC of composite ceramics with 0.5 wt% GO and 2.29 wt% SiCnw at thickness of 3.6 mm reached -42.02 dB with corresponding effective absorption bandwidth (EAB) of 4.2 GHz. As temperature rose from 25 to 400 °C, permittivity increased with enhanced charge carrier density and then it decreased due to oxidation process of RGO from 400 to 600 °C. The minimum reflection coefficient (RC) was recorded as -39.13 dB and EAB covered the entire X-band at 600 °C. EMW absorption ability was evaluated after high-temperature oxidation experiment under protective effect of wave-transparent Si3N4 coating. RGO-SiCnw/SiBCN composite ceramics maintained outstanding EMW absorption ability with minimum RC of -10.41 dB after oxidation at 900 °C, indicating RGO-SiCnw/SiBCN composite ceramics with excellent EMW absorption characteristic even at high temperatures and harsh environments.
Original language | English |
---|---|
Pages (from-to) | 7719-7732 |
Number of pages | 14 |
Journal | Ceramics International |
Volume | 46 |
Issue number | 6 |
DOIs | |
State | Published - 15 Apr 2020 |
Keywords
- CVI
- Dielectric property
- Electrimagnetic wave absorption characteristic
- PDC
- RGO-SiC/SiBCN