MHESMMR: a multilevel model for predicting the regulation of miRNAs expression by small molecules

Yong Jian Guan, Chang Qing Yu, Li Ping Li, Zhu Hong You, Meng meng Wei, Xin Fei Wang, Chen Yang, Lu Xiang Guo

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

According to the expression of miRNA in pathological processes, miRNAs can be divided into oncogenes or tumor suppressors. Prediction of the regulation relations between miRNAs and small molecules (SMs) becomes a vital goal for miRNA-target therapy. But traditional biological approaches are laborious and expensive. Thus, there is an urgent need to develop a computational model. In this study, we proposed a computational model to predict whether the regulatory relationship between miRNAs and SMs is up-regulated or down-regulated. Specifically, we first use the Large-scale Information Network Embedding (LINE) algorithm to construct the node features from the self-similarity networks, then use the General Attributed Multiplex Heterogeneous Network Embedding (GATNE) algorithm to extract the topological information from the attribute network, and finally utilize the Light Gradient Boosting Machine (LightGBM) algorithm to predict the regulatory relationship between miRNAs and SMs. In the fivefold cross-validation experiment, the average accuracies of the proposed model on the SM2miR dataset reached 79.59% and 80.37% for up-regulation pairs and down-regulation pairs, respectively. In addition, we compared our model with another published model. Moreover, in the case study for 5-FU, 7 of 10 candidate miRNAs are confirmed by related literature. Therefore, we believe that our model can promote the research of miRNA-targeted therapy.

Original languageEnglish
Article number6
JournalBMC Bioinformatics
Volume25
Issue number1
DOIs
StatePublished - Dec 2024

Keywords

  • Generally attributed multiplex heterogeneous network embedding
  • LINE
  • Machine learning
  • microRNA
  • Small molecule

Fingerprint

Dive into the research topics of 'MHESMMR: a multilevel model for predicting the regulation of miRNAs expression by small molecules'. Together they form a unique fingerprint.

Cite this