TY - GEN
T1 - MedIM
T2 - 26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023
AU - Xie, Yutong
AU - Gu, Lin
AU - Harada, Tatsuya
AU - Zhang, Jianpeng
AU - Xia, Yong
AU - Wu, Qi
N1 - Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
PY - 2023
Y1 - 2023
N2 - Masked image modelling (MIM)-based pre-training shows promise in improving image representations with limited annotated data by randomly masking image patches and reconstructing them. However, random masking may not be suitable for medical images due to their unique pathology characteristics. This paper proposes Masked medical Image Modelling (MedIM), a novel approach, to our knowledge, the first research that masks and reconstructs discriminative areas guided by radiological reports, encouraging the network to explore the stronger semantic representations from medical images. We introduce two mutual comprehensive masking strategies, knowledge word-driven masking (KWM) and sentence-driven masking (SDM). KWM uses Medical Subject Headings (MeSH) words unique to radiology reports to identify discriminative cues mapped to MeSH words and guide the mask generation. SDM considers that reports usually have multiple sentences, each of which describes different findings, and therefore integrates sentence-level information to identify discriminative regions for mask generation. MedIM integrates both strategies by simultaneously restoring the images masked by KWM and SDM for a more robust and representative medical visual representation. Our extensive experiments on various downstream tasks covering multi-label/class image classification, medical image segmentation, and medical image-text analysis, demonstrate that MedIM with report-guided masking achieves competitive performance. Our method substantially outperforms ImageNet pre-training, MIM-based pre-training, and medical image-report pre-training counterparts. Codes are available at https://github.com/YtongXie/MedIM.
AB - Masked image modelling (MIM)-based pre-training shows promise in improving image representations with limited annotated data by randomly masking image patches and reconstructing them. However, random masking may not be suitable for medical images due to their unique pathology characteristics. This paper proposes Masked medical Image Modelling (MedIM), a novel approach, to our knowledge, the first research that masks and reconstructs discriminative areas guided by radiological reports, encouraging the network to explore the stronger semantic representations from medical images. We introduce two mutual comprehensive masking strategies, knowledge word-driven masking (KWM) and sentence-driven masking (SDM). KWM uses Medical Subject Headings (MeSH) words unique to radiology reports to identify discriminative cues mapped to MeSH words and guide the mask generation. SDM considers that reports usually have multiple sentences, each of which describes different findings, and therefore integrates sentence-level information to identify discriminative regions for mask generation. MedIM integrates both strategies by simultaneously restoring the images masked by KWM and SDM for a more robust and representative medical visual representation. Our extensive experiments on various downstream tasks covering multi-label/class image classification, medical image segmentation, and medical image-text analysis, demonstrate that MedIM with report-guided masking achieves competitive performance. Our method substantially outperforms ImageNet pre-training, MIM-based pre-training, and medical image-report pre-training counterparts. Codes are available at https://github.com/YtongXie/MedIM.
UR - http://www.scopus.com/inward/record.url?scp=85174604079&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-43907-0_2
DO - 10.1007/978-3-031-43907-0_2
M3 - 会议稿件
AN - SCOPUS:85174604079
SN - 9783031439063
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 13
EP - 23
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 - 26th International Conference, Proceedings
A2 - Greenspan, Hayit
A2 - Greenspan, Hayit
A2 - Madabhushi, Anant
A2 - Mousavi, Parvin
A2 - Salcudean, Septimiu
A2 - Duncan, James
A2 - Syeda-Mahmood, Tanveer
A2 - Taylor, Russell
PB - Springer Science and Business Media Deutschland GmbH
Y2 - 8 October 2023 through 12 October 2023
ER -