Mechanical behavior of ultrafine-grained materials under combined static and dynamic loadings

Y. Z. Guo, X. Y. Sun, J. G. Li, X. Yu, Y. L. Li

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

Ultrafine-grained (UFG) materials have extensive prospects for engineering application due to their excellent mechanical properties. However, the grain size decrease reduces their strain hardening ability and makes UFG materials more susceptible to deformation instability such as shear localization. In most cases, critical shear strain is taken as the criterion for formation of shear localization under impact loading or adiabatic shear band (ASB). Recently, some researchers found that the formation of ASB was determined only by the dynamic loading process and had nothing to do with its static loading history. They proposed for coarse-grained metals a dynamic stored energy-based criterion for ASB and verified it by some experiments. In this study, we will focus on the shear localization behavior of UFG metals such as UFG titanium and magnesium alloy AZ31. Quasi-static loading and dynamic loading will be applied on the same specimen alternately. The shear localization behavior will be analyzed and the criterion of its formation will be evaluated.

Original languageEnglish
Title of host publicationDYMAT 2015 - 11th International Conference on the Mechanical and Physical Behaviour of Materials Under Dynamic Loading
EditorsEzio Cadoni
PublisherEDP Sciences
ISBN (Electronic)9782759818174
DOIs
StatePublished - 7 Sep 2015
Event11th International Conference on the Mechanical and Physical Behaviour of Materials Under Dynamic Loading, DYMAT 2015 - Lugano, Switzerland
Duration: 7 Sep 201511 Sep 2015

Publication series

NameEPJ Web of Conferences
Volume94
ISSN (Print)2101-6275
ISSN (Electronic)2100-014X

Conference

Conference11th International Conference on the Mechanical and Physical Behaviour of Materials Under Dynamic Loading, DYMAT 2015
Country/TerritorySwitzerland
CityLugano
Period7/09/1511/09/15

Fingerprint

Dive into the research topics of 'Mechanical behavior of ultrafine-grained materials under combined static and dynamic loadings'. Together they form a unique fingerprint.

Cite this