Maximum margin multi-instance learning

Hua Wang, Heng Huang, Farhad Kamangar, Feiping Nie, Chris Ding

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

26 Scopus citations

Abstract

Multi-instance learning (MIL) considers input as bags of instances, in which labels are assigned to the bags. MIL is useful in many real-world applications. For example, in image categorization semantic meanings (labels) of an image mostly arise from its regions (instances) instead of the entire image (bag). Existing MIL methods typically build their models using the Bag-to-Bag (B2B) distance, which are often computationally expensive and may not truly reflect the semantic similarities. To tackle this, in this paper we approach MIL problems from a new perspective using the Class-to-Bag (C2B) distance, which directly assesses the relationships between the classes and the bags. Taking into account the two major challenges in MIL, high heterogeneity on data and weak label association, we propose a novel Maximum Margin Multi-Instance Learning (M3I) approach to parameterize the C2B distance by introducing the class specific distance metrics and the locally adaptive significance coefficients. We apply our new approach to the automatic image categorization tasks on three (one single-label and two multilabel) benchmark data sets. Extensive experiments have demonstrated promising results that validate the proposed method.

Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 24
Subtitle of host publication25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011
PublisherNeural Information Processing Systems
ISBN (Print)9781618395993
StatePublished - 2011
Externally publishedYes
Event25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011 - Granada, Spain
Duration: 12 Dec 201114 Dec 2011

Publication series

NameAdvances in Neural Information Processing Systems 24: 25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011

Conference

Conference25th Annual Conference on Neural Information Processing Systems 2011, NIPS 2011
Country/TerritorySpain
CityGranada
Period12/12/1114/12/11

Fingerprint

Dive into the research topics of 'Maximum margin multi-instance learning'. Together they form a unique fingerprint.

Cite this