LSTM-DNN Based Autoencoder Network for Nonlinear Hyperspectral Image Unmixing

Min Zhao, Longbin Yan, Jie Chen

Research output: Contribution to journalArticlepeer-review

51 Scopus citations

Abstract

Blind hyperspectral unmixing is an important technique in hyperspectral image analysis, aiming at estimating endmembers and their respective fractional abundances. Consider the limitations of using the linear model, nonlinear unmixing methods have been studied under different model assumptions. However, existing nonlinear unmixing algorithms do not fully exploit spectral and spatial correlation information. This paper proposes a nonsymmetric autoencoder network to overcome this issue. The proposed scheme benefits from the universal modeling ability of deep neural networks and enables to learn the nonlinear relation from the data. Particularly, the long short-term memory network (LSTM) structure is included to capture spectral correlation information, and a spatial regularization is introduced to improve the spatial continuity of results. An attention mechanism is also used to further enhance the unmixing performance. Experiments with synthetic and real data are conducted to illustrate the effectiveness of the proposed method.

Original languageEnglish
Article number9326377
Pages (from-to)295-309
Number of pages15
JournalIEEE Journal on Selected Topics in Signal Processing
Volume15
Issue number2
DOIs
StatePublished - Feb 2021

Keywords

  • attention recurrent neural network
  • autoencoder network
  • Hyperspectral unmixing
  • nonlinear unmixing

Fingerprint

Dive into the research topics of 'LSTM-DNN Based Autoencoder Network for Nonlinear Hyperspectral Image Unmixing'. Together they form a unique fingerprint.

Cite this