Low-rank tensor completion with spatio-temporal consistency

Hua Wang, Feiping Nie, Heng Huang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

32 Scopus citations

Abstract

Video completion is a computer vision technique to recover the missing values in video sequences by filling the unknown regions with the known information. In recent research, tensor completion, a generalization of matrix completion for higher order data, emerges as a new solution to estimate the missing information in video with the assumption that the video frames are homogenous and correlated. However, each video clip often stores the heterogeneous episodes and the correla-tions among all video frames are not high. Thus, the regular tenor completion methods are not suitable to recover the video missing values in practical applications. To solve this problem, we propose a novel spatial ly- temporally consistent tensor completion method for recovering the video missing data. Instead of minimizing the average of the trace norms of all matrices unfolded along each mode of a tensor data, we introduce a new smoothness regularization along video time direction to utilize the temporal information between consecutive video frames. Meanwhile, we also minimize the trace norm of each individual video frame to employ the spatial correlations among pixels. Different to previous tensor completion approaches, our new method can keep the spatio-temporal consistency in video and do not assume the global correlation in video frames. Thus, the proposed method can be applied to the general and practical video completion applications. Our method shows promising results in all evaluations on both 3D biomedical image sequence and video benchmark data sets.

Original languageEnglish
Title of host publicationProceedings of the National Conference on Artificial Intelligence
PublisherAI Access Foundation
Pages2846-2852
Number of pages7
ISBN (Electronic)9781577356806
StatePublished - 2014
Externally publishedYes
Event28th AAAI Conference on Artificial Intelligence, AAAI 2014, 26th Innovative Applications of Artificial Intelligence Conference, IAAI 2014 and the 5th Symposium on Educational Advances in Artificial Intelligence, EAAI 2014 - Quebec City, Canada
Duration: 27 Jul 201431 Jul 2014

Publication series

NameProceedings of the National Conference on Artificial Intelligence
Volume4

Conference

Conference28th AAAI Conference on Artificial Intelligence, AAAI 2014, 26th Innovative Applications of Artificial Intelligence Conference, IAAI 2014 and the 5th Symposium on Educational Advances in Artificial Intelligence, EAAI 2014
Country/TerritoryCanada
CityQuebec City
Period27/07/1431/07/14

Fingerprint

Dive into the research topics of 'Low-rank tensor completion with spatio-temporal consistency'. Together they form a unique fingerprint.

Cite this