Locality adaptive discriminant analysis

Xuelong Li, Mulin Chen, Feiping Nie, Qi Wang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

159 Scopus citations

Abstract

Linear Discriminant Analysis (LDA) is a popular technique for supervised dimensionality reduction, and its performance is satisfying when dealing with Gaussian distributed data. However, the neglect of local data structure makes LDA inapplicable to many real-world situations. So some works focus on the discriminant analysis between neighbor points, which can be easily affected by the noise in the original data space. In this paper, we propose a new supervised dimensionality reduction method, Locality Adaptive Discriminant Analysis (LADA), to learn a representative subspace of the data. Compared to LDA and its variants, the proposed method has three salient advantages: (1) it finds the principle projection directions without imposing any assumption on the data distribution; (2) it's able to exploit the local manifold structure of data in the desired subspace; (3) it exploits the points' neighbor relationship automatically without introducing any additional parameter to be tuned. Performance on synthetic datasets and real-world benchmark datasets demonstrate the superiority of the proposed method.

Original languageEnglish
Title of host publication26th International Joint Conference on Artificial Intelligence, IJCAI 2017
EditorsCarles Sierra
PublisherInternational Joint Conferences on Artificial Intelligence
Pages2201-2207
Number of pages7
ISBN (Electronic)9780999241103
DOIs
StatePublished - 2017
Event26th International Joint Conference on Artificial Intelligence, IJCAI 2017 - Melbourne, Australia
Duration: 19 Aug 201725 Aug 2017

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume0
ISSN (Print)1045-0823

Conference

Conference26th International Joint Conference on Artificial Intelligence, IJCAI 2017
Country/TerritoryAustralia
CityMelbourne
Period19/08/1725/08/17

Fingerprint

Dive into the research topics of 'Locality adaptive discriminant analysis'. Together they form a unique fingerprint.

Cite this