TY - JOUR
T1 - LiqDetector
T2 - Enabling Container-Independent Liquid Detection with mmWave Signals Based on a Dual-Reflection Model
AU - Wang, Zhu
AU - Guo, Yifan
AU - Ren, Zhihui
AU - Song, Wenchao
AU - Sun, Zhuo
AU - Chen, Chao
AU - Guo, Bin
AU - Yu, Zhiwen
N1 - Publisher Copyright:
© 2024 ACM.
PY - 2024/1/12
Y1 - 2024/1/12
N2 - With the advancement of wireless sensing technologies, RF-based contact-less liquid detection attracts more and more attention. Compared with other RF devices, the mmWave radar has the advantages of large bandwidth and low cost. While existing radar-based liquid detection systems demonstrate promising performance, they still have a shortcoming that in the detection result depends on container-related factors (e.g., container placement, container caliber, and container material). In this paper, to enable container-independent liquid detection with a COTS mmWave radar, we propose a dual-reflection model by exploring reflections from different interfaces of the liquid container. Specifically, we design a pair of amplitude ratios based on the signals reflected from different interfaces, and theoretically demonstrate how the refractive index of liquids can be estimated by eliminating the container's impact. To validate the proposed approach, we implement a liquid detection system LiqDetector. Experimental results show that LiqDetector achieves cross-container estimation of the liquid's refractive index with a mean absolute percentage error (MAPE) of about 4.4%. Moreover, the classification accuracies for 6 different liquids and alcohol with different strengths (even a difference of 1%) exceed 96% and 95%, respectively. To the best of our knowledge, this is the first study that achieves container-independent liquid detection based on the COTS mmWave radar by leveraging only one pair of Tx-Rx antennas.
AB - With the advancement of wireless sensing technologies, RF-based contact-less liquid detection attracts more and more attention. Compared with other RF devices, the mmWave radar has the advantages of large bandwidth and low cost. While existing radar-based liquid detection systems demonstrate promising performance, they still have a shortcoming that in the detection result depends on container-related factors (e.g., container placement, container caliber, and container material). In this paper, to enable container-independent liquid detection with a COTS mmWave radar, we propose a dual-reflection model by exploring reflections from different interfaces of the liquid container. Specifically, we design a pair of amplitude ratios based on the signals reflected from different interfaces, and theoretically demonstrate how the refractive index of liquids can be estimated by eliminating the container's impact. To validate the proposed approach, we implement a liquid detection system LiqDetector. Experimental results show that LiqDetector achieves cross-container estimation of the liquid's refractive index with a mean absolute percentage error (MAPE) of about 4.4%. Moreover, the classification accuracies for 6 different liquids and alcohol with different strengths (even a difference of 1%) exceed 96% and 95%, respectively. To the best of our knowledge, this is the first study that achieves container-independent liquid detection based on the COTS mmWave radar by leveraging only one pair of Tx-Rx antennas.
KW - liquid detection
KW - mmWave Radar
KW - wireless sensing
UR - http://www.scopus.com/inward/record.url?scp=85182587562&partnerID=8YFLogxK
U2 - 10.1145/3631443
DO - 10.1145/3631443
M3 - 文章
AN - SCOPUS:85182587562
SN - 2474-9567
VL - 7
JO - Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
JF - Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
IS - 4
M1 - 186
ER -