TY - GEN
T1 - Learning to Synthesize 7 T MRI from 3 T MRI with Few Data by Deformable Augmentation
AU - Wei, Jie
AU - Pan, Yongsheng
AU - Xia, Yong
AU - Shen, Dinggang
N1 - Publisher Copyright:
© 2021, Springer Nature Switzerland AG.
PY - 2021
Y1 - 2021
N2 - High-quality magnetic resonance imaging (MRI), which is generally acquired by ultra-high field (7-Tesla, 7 T) MRI scanners, may lead to improved performance for brain disease diagnosis, such as Alzheimer’s disease (AD). However, 7 T MRI has not been widely used due to higher cost and longer scanning time. To overcome this, we proposed to utilize the generative adversarial networks (GAN)-based techniques to synthesize the 7 T scans from 3 T scans, for which, the most challenge is that we do not have enough data to learn a reliable mapping from 3 T to 7 T. To address this, we further proposed the Unlimited Data Augmentation (UDA) strategy to increase the learning samples via the deformable registration, which can produce enough paired 3 T and 7 T MR images to learning this mapping. Based on this mapping, we synthesize a 7 T MR scan for each subject in Alzheimer’s Disease Neuroimaging Initiative (ADNI), and conduct some experiments to evaluate their effect in two tasks of AD diagnosis, including AD identification and mild cognitive impairment (MCI) conversion prediction. Experimental results demonstrate that our UDA strategy is effective to learn a reliable mapping to high-quality MR images, and the synthetic 7 T scans are possible to increase the performance of AD diagnosis.
AB - High-quality magnetic resonance imaging (MRI), which is generally acquired by ultra-high field (7-Tesla, 7 T) MRI scanners, may lead to improved performance for brain disease diagnosis, such as Alzheimer’s disease (AD). However, 7 T MRI has not been widely used due to higher cost and longer scanning time. To overcome this, we proposed to utilize the generative adversarial networks (GAN)-based techniques to synthesize the 7 T scans from 3 T scans, for which, the most challenge is that we do not have enough data to learn a reliable mapping from 3 T to 7 T. To address this, we further proposed the Unlimited Data Augmentation (UDA) strategy to increase the learning samples via the deformable registration, which can produce enough paired 3 T and 7 T MR images to learning this mapping. Based on this mapping, we synthesize a 7 T MR scan for each subject in Alzheimer’s Disease Neuroimaging Initiative (ADNI), and conduct some experiments to evaluate their effect in two tasks of AD diagnosis, including AD identification and mild cognitive impairment (MCI) conversion prediction. Experimental results demonstrate that our UDA strategy is effective to learn a reliable mapping to high-quality MR images, and the synthetic 7 T scans are possible to increase the performance of AD diagnosis.
UR - http://www.scopus.com/inward/record.url?scp=85116426184&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-87589-3_8
DO - 10.1007/978-3-030-87589-3_8
M3 - 会议稿件
AN - SCOPUS:85116426184
SN - 9783030875886
T3 - Lecture Notes in Computer Science
SP - 70
EP - 79
BT - Machine Learning in Medical Imaging - 12th International Workshop, MLMI 2021, Held in Conjunction with MICCAI 2021, Proceedings
A2 - Lian, Chunfeng
A2 - Cao, Xiaohuan
A2 - Rekik, Islem
A2 - Xu, Xuanang
A2 - Yan, Pingkun
PB - Springer Science and Business Media Deutschland GmbH
T2 - 12th International Workshop on Machine Learning in Medical Imaging, MLMI 2021, held in conjunction with 24th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2021
Y2 - 27 September 2021 through 27 September 2021
ER -