Learning metrics from teachers: Compact networks for image embedding

Lu Yu, Vacit Oguz Yazici, Xialei Liu, Joost Van De Weijer, Yongmei Cheng, Arnau Ramisa

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

103 Scopus citations

Abstract

Metric learning networks are used to compute image embeddings, which are widely used in many applications such as image retrieval and face recognition. In this paper, we propose to use network distillation to efficiently compute image embeddings with small networks. Network distillation has been successfully applied to improve image classification, but has hardly been explored for metric learning. To do so, we propose two new loss functions that model the communication of a deep teacher network to a small student network. We evaluate our system in several datasets, including CUB-200-2011, Cars-196, Stanford Online Products and show that embeddings computed using small student networks perform significantly better than those computed using standard networks of similar size. Results on a very compact network (MobileNet-0.25), which can be used on mobile devices, show that the proposed method can greatly improve Recall@1 results from 27.5% to 44.6%. Furthermore, we investigate various aspects of distillation for embeddings, including hint and attention layers, semi-supervised learning and cross quality distillation. (Code is available at https://github.com/yulu0724/EmbeddingDistillation).

Original languageEnglish
Title of host publicationProceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
PublisherIEEE Computer Society
Pages2902-2911
Number of pages10
ISBN (Electronic)9781728132938
DOIs
StatePublished - Jun 2019
Event32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 - Long Beach, United States
Duration: 16 Jun 201920 Jun 2019

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2019-June
ISSN (Print)1063-6919

Conference

Conference32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
Country/TerritoryUnited States
CityLong Beach
Period16/06/1920/06/19

Keywords

  • Categorization
  • Recognition: Detection
  • Representation Learning
  • Retrieval

Fingerprint

Dive into the research topics of 'Learning metrics from teachers: Compact networks for image embedding'. Together they form a unique fingerprint.

Cite this