TY - GEN
T1 - Learning instance specific distance for multi-instance classification
AU - Wang, Hua
AU - Nie, Feiping
AU - Huang, Heng
PY - 2011
Y1 - 2011
N2 - Multi-Instance Learning (MIL) deals with problems where each training example is a bag, and each bag contains a set of instances. Multi-instance representation is useful in many real world applications, because it is able to capture more structural information than traditional flat single-instance representation. However, it also brings new challenges. Specifically, the distance between data objects in MIL is a set-to-set distance, which is harder to estimate than vector distances used in single-instance data. Moreover, because in MIL labels are assigned to bags instead of instances, although a bag belongs to a class, some, or even most, of its instances may not be truly related to the class. In order to address these difficulties, in this paper we propose a novel Instance Specific Distance (ISD) method for MIL, which computes the Class-to-Bag (C2B) distance by further considering the relevances of training instances with respect to their labeled classes. Taking into account the outliers caused by the weak label association in MIL, we learn ISD by solving an ℓ0+-norm minimization problem. An efficient algorithm to solve the optimization problem is presented, together with the rigorous proof of its convergence. The promising results on five benchmark multi-instance data sets and two real world multi-instance applications validate the effectiveness of the proposed method.
AB - Multi-Instance Learning (MIL) deals with problems where each training example is a bag, and each bag contains a set of instances. Multi-instance representation is useful in many real world applications, because it is able to capture more structural information than traditional flat single-instance representation. However, it also brings new challenges. Specifically, the distance between data objects in MIL is a set-to-set distance, which is harder to estimate than vector distances used in single-instance data. Moreover, because in MIL labels are assigned to bags instead of instances, although a bag belongs to a class, some, or even most, of its instances may not be truly related to the class. In order to address these difficulties, in this paper we propose a novel Instance Specific Distance (ISD) method for MIL, which computes the Class-to-Bag (C2B) distance by further considering the relevances of training instances with respect to their labeled classes. Taking into account the outliers caused by the weak label association in MIL, we learn ISD by solving an ℓ0+-norm minimization problem. An efficient algorithm to solve the optimization problem is presented, together with the rigorous proof of its convergence. The promising results on five benchmark multi-instance data sets and two real world multi-instance applications validate the effectiveness of the proposed method.
UR - http://www.scopus.com/inward/record.url?scp=80055055641&partnerID=8YFLogxK
M3 - 会议稿件
AN - SCOPUS:80055055641
SN - 9781577355083
T3 - Proceedings of the National Conference on Artificial Intelligence
SP - 507
EP - 512
BT - AAAI-11 / IAAI-11 - Proceedings of the 25th AAAI Conference on Artificial Intelligence and the 23rd Innovative Applications of Artificial Intelligence Conference
T2 - 25th AAAI Conference on Artificial Intelligence and the 23rd Innovative Applications of Artificial Intelligence Conference, AAAI-11 / IAAI-11
Y2 - 7 August 2011 through 11 August 2011
ER -