Learning Hierarchical Representations for Expressive Speaking Style in End-To-End Speech Synthesis

Xiaochun An, Yuxuan Wang, Shan Yang, Zejun Ma, Lei Xie

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

17 Scopus citations

Abstract

Although Global Style Tokens (GSTs) are a recently-proposed method to uncover expressive factors of variation in speaking style, they are a mixture of style attributes without explicitly considering the factorization of multiple-level speaking styles. In this work, we introduce a hierarchical GST architecture with residuals to Tacotron, which learns multiple-level disentangled representations to model and control different style granularities in synthesized speech. We make hierarchical evaluations conditioned on individual tokens from different GST layers. As the number of layers increases, we tend to observe a coarse to fine style decomposition. For example, the first GST layer learns a good representation of speaker IDs while finer speaking style or emotion variations can be found in higher-level layers. Meanwhile, the proposed model shows good performance of style transfer.

Original languageEnglish
Title of host publication2019 IEEE Automatic Speech Recognition and Understanding Workshop, ASRU 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages184-191
Number of pages8
ISBN (Electronic)9781728103068
DOIs
StatePublished - Dec 2019
Event2019 IEEE Automatic Speech Recognition and Understanding Workshop, ASRU 2019 - Singapore, Singapore
Duration: 15 Dec 201918 Dec 2019

Publication series

Name2019 IEEE Automatic Speech Recognition and Understanding Workshop, ASRU 2019 - Proceedings

Conference

Conference2019 IEEE Automatic Speech Recognition and Understanding Workshop, ASRU 2019
Country/TerritorySingapore
CitySingapore
Period15/12/1918/12/19

Keywords

  • disentangled representations
  • hierarchical GST
  • Speaking style
  • style transfer

Fingerprint

Dive into the research topics of 'Learning Hierarchical Representations for Expressive Speaking Style in End-To-End Speech Synthesis'. Together they form a unique fingerprint.

Cite this