Learning feature sparse principal subspace

Lai Tian, Feiping Nie, Rong Wang, Xuelong Li

Research output: Contribution to journalConference articlepeer-review

18 Scopus citations

Abstract

This paper presents new algorithms to solve the feature-sparsity constrained PCA problem (FSPCA), which performs feature selection and PCA simultaneously. Existing optimization methods for FSPCA require data distribution assumptions and lack of global convergence guarantee. Though the general FSPCA problem is NP-hard, we show that, for a low-rank covariance, FSPCA can be solved globally (Algorithm 1). Then, we propose another strategy (Algorithm 2) to solve FSPCA for the general covariance by iteratively building a carefully designed proxy. We prove (data-dependent) approximation bound and convergence guarantees for the new algorithms. For the spectrum of covariance with exponential/Zipf’s distribution, we provide exponential/posynomial approximation bound. Experimental results show the promising performance and efficiency of the new algorithms compared with the state-of-the-arts on both synthetic and real-world datasets.

Original languageEnglish
JournalAdvances in Neural Information Processing Systems
Volume2020-December
StatePublished - 2020
Event34th Conference on Neural Information Processing Systems, NeurIPS 2020 - Virtual, Online
Duration: 6 Dec 202012 Dec 2020

Fingerprint

Dive into the research topics of 'Learning feature sparse principal subspace'. Together they form a unique fingerprint.

Cite this