TY - GEN
T1 - Learning Dual Priors for JPEG Compression Artifacts Removal
AU - Fu, Xueyang
AU - Wang, Xi
AU - Liu, Aiping
AU - Han, Junwei
AU - Zha, Zheng Jun
N1 - Publisher Copyright:
© 2021 IEEE
PY - 2021
Y1 - 2021
N2 - Deep learning (DL)-based methods have achieved great success in solving the ill-posed JPEG compression artifacts removal problem. However, as most DL architectures are designed to directly learn pixel-level mapping relationships, they largely ignore semantic-level information and lack sufficient interpretability. To address the above issues, in this work, we propose an interpretable deep network to learn both pixel-level regressive prior and semantic-level discriminative prior. Specifically, we design a variational model to formulate the image de-blocking problem and propose two prior terms for the image content and gradient, respectively. The content-relevant prior is formulated as a DL-based image-to-image regressor to perform as a de-blocker from the pixel-level. The gradient-relevant pri- or serves as a DL-based classifier to distinguish whether the image is compressed from the semantic-level. To effectively solve the variational model, we design an alternating minimization algorithm and unfold it into a deep network architecture. In this way, not only the interpretability of the deep network is increased, but also the dual priors can be well estimated from training samples. By integrating the two priors into a single framework, the image de-blocking problem can be well-constrained, leading to a better performance. Experiments on benchmarks and real-world use cases demonstrate the superiority of our method to the existing state-of-the-art approaches.
AB - Deep learning (DL)-based methods have achieved great success in solving the ill-posed JPEG compression artifacts removal problem. However, as most DL architectures are designed to directly learn pixel-level mapping relationships, they largely ignore semantic-level information and lack sufficient interpretability. To address the above issues, in this work, we propose an interpretable deep network to learn both pixel-level regressive prior and semantic-level discriminative prior. Specifically, we design a variational model to formulate the image de-blocking problem and propose two prior terms for the image content and gradient, respectively. The content-relevant prior is formulated as a DL-based image-to-image regressor to perform as a de-blocker from the pixel-level. The gradient-relevant pri- or serves as a DL-based classifier to distinguish whether the image is compressed from the semantic-level. To effectively solve the variational model, we design an alternating minimization algorithm and unfold it into a deep network architecture. In this way, not only the interpretability of the deep network is increased, but also the dual priors can be well estimated from training samples. By integrating the two priors into a single framework, the image de-blocking problem can be well-constrained, leading to a better performance. Experiments on benchmarks and real-world use cases demonstrate the superiority of our method to the existing state-of-the-art approaches.
UR - http://www.scopus.com/inward/record.url?scp=85126841067&partnerID=8YFLogxK
U2 - 10.1109/ICCV48922.2021.00405
DO - 10.1109/ICCV48922.2021.00405
M3 - 会议稿件
AN - SCOPUS:85126841067
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 4066
EP - 4075
BT - Proceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
Y2 - 11 October 2021 through 17 October 2021
ER -