Abstract
In the present work, we investigate the graphic carbon nitride (g-CN) film as photoanode to catalyze the photoelectrochemical (PEC) water oxidation and study the influence of NiCo layered double hydroxides (NiCo-LDH) layer on the performance. The g-CN film with good quality and intimate contact with substrate was in-situ prepared via solvothermal process and subsequent calcination. NiCo-LDH is further decorated on the g-CN film through cathodic electrochemical deposition to work as co-catalyst. The g-CN/NiCo-LDH composite with optimized NiCo-LDH loading amount exhibits a photocurrent of 11.8 μA cm−2 at 0.6 V vs. SCE, which is 2.8 times of bare g-CN. Characterizations and performance tests demonstrate that NiCo-LDH promoted reaction kinetics and charge separation. The results provide an effective strategy to improve the photoelectrochemical water oxidation performance of g-CN through NiCo-LDH co-catalyst. This work to investigate the photoelectrochemical water oxidation is of great significance toward explore the overall water splitting on the g-CN film.
Original language | English |
---|---|
Pages (from-to) | 423-428 |
Number of pages | 6 |
Journal | Catalysis Today |
Volume | 335 |
DOIs | |
State | Published - 1 Sep 2019 |
Externally published | Yes |
Keywords
- Co-catalyst
- Graphitic carbon nitride
- Layered double hydroxides
- Photoelectrochemical water oxidation
- Solvothermal process