Large-scale multi-view spectral clustering via bipartite graph

Yeqing Li, Feiping Nie, Heng Huang, Junzhou Huang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

474 Scopus citations

Abstract

In this paper, we address the problem of large-scale multi-view spectral clustering. In many real-world applications, data can be represented in various heterogeneous features or views. Different views often provide different aspects of information that are complementary to each other. Several previous methods of clustering have demonstrated that better accuracy can be achieved using integrated information of all the views than just using each view individually. One important class of such methods is multi-view spectral clustering, which is based on graph Laplacian. However, existing methods are not applicable to large-scale problem for their high computational complexity. To this end, we propose a novel large-scale multi-view spectral clustering approach based on the bipartite graph. Our method uses local manifold fusion to integrate heterogeneous features. To improve efficiency, we approximate the similarity graphs using bipartite graphs. Furthermore, we show that our method can be easily extended to handle the out-of-sample problem. Extensive experimental results on five benchmark datasets demonstrate the effectiveness and efficiency of the proposed method, where our method runs up to nearly 3000 times faster than the state-of-the-art methods.

Original languageEnglish
Title of host publicationProceedings of the 29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
PublisherAI Access Foundation
Pages2750-2756
Number of pages7
ISBN (Electronic)9781577357025
StatePublished - 1 Jun 2015
Externally publishedYes
Event29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015 - Austin, United States
Duration: 25 Jan 201530 Jan 2015

Publication series

NameProceedings of the National Conference on Artificial Intelligence
Volume4

Conference

Conference29th AAAI Conference on Artificial Intelligence, AAAI 2015 and the 27th Innovative Applications of Artificial Intelligence Conference, IAAI 2015
Country/TerritoryUnited States
CityAustin
Period25/01/1530/01/15

Fingerprint

Dive into the research topics of 'Large-scale multi-view spectral clustering via bipartite graph'. Together they form a unique fingerprint.

Cite this